• Title/Summary/Keyword: 차량/타이어

Search Result 210, Processing Time 0.056 seconds

The Tire Damage Classification by Pulse Interval Time Density Function of Ultrasonic Wave Envelope on Driving (주행 중 타이어 손상에 의해 발생하는 초음파 포락선 신호의 펄스 간격 시간밀도함수에 의한 손상 분별)

  • Shin, Seong-Geun;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2011
  • The tire damage classification method is researched by periodicity detection of ultrasonic envelope signals to occur at the driving vehicle tire. Because periodic signals is generated by rotations of the damaged tire, it should convert to pulse for using the density function. After time intervals of pulses are represented by the density function, the dominant periodicity is detected. The threshold to make a pulse is calculated by moving average of envelope signals. The result of time density function in case of one damage material, the first peak's time is equals to tire's rotation period, 162ms and 102ms, about the speed of 50km/h and 80km/h. In case of more than one damage material, the sum of each peak's time is equals to tire's rotation period about the speed.

Performance Improvement of Integrated Chassis Control with Determination of Rear Wheel Steering Angle (후륜 조향각 결정을 통한 통합 섀시 제어기의 성능 향상)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.111-119
    • /
    • 2017
  • This paper presents a method to determine the rear steering angle in integrated chassis control with electronic stability control (ESC) and rear wheel steering (RWS). A control yaw moment needed to stabilize a vehicle should be distributed into the tire forces generated by the ESC and RWS. Weighted pseudo-inverse control allocation (WPCA) is adopted to determine the tire forces. Four methods are proposed to calculate the rear wheel steering angle. To validate the proposed methods, a simulation is performed using a vehicle simulation software package, CarSim. The simulation results show that the proposed method for determining the rear wheel steering angle improves the performance of the integrated chassis control.

Development of Tire Lateral Force Monitoring System Using SKFMEC (SKFMEC를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • Kim, Jun-Yeong;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1871-1877
    • /
    • 2000
  • Longitudinal and lateral forces acting at tire are known to be closely related to the tractive ability, braking characteristics, handling stability and maneuverability of ground vehicles. However, it is not feasible in the operating vehicles to measure the tire forces directly because of high cost of sensors, limitations in sensor technology, interference with the tire rotation and harsh environment. In this paper, in order to develop tire force monitoring system, a new vehicle dynamics monitoring model is proposed including the roll motion. Based on the monitoring model, tire force monitoring system is designed to estimate the lateral tire force acting at each tire. A newly proposed SKFMEC (Scaled Kalman Filter with Model Emr Compensator) method is developed utilizing the conventional EKF (Extended Kalman Filter) method. Tire force estimation performance of the SKFMEC method is evaluated in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with a combined-slip Magic Formula tire model.

Performance Analysis with Different Tire Pressure of Quarter-vehicle System Featuring MR Damper (MR 댐퍼를 장착한 1/4차량의 타이어 공기압에 따른 성능분석)

  • Sung, Kum-Gil;Lee, Ho-Guen;Choi, Seung-Bok;Park, Min-Kyu;Park, Myung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.249-256
    • /
    • 2010
  • This paper presents performance analysis of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, MR damper is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR damper, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS and weighted RMS of sprung mass are evaluated under various road conditions.

Development of Auto-Parking Algorithm for Driving in Urban (무인차량의 자동주차 알고리즘 개발)

  • Cho, Kyoung-Hwan;Chung, Jin-Wok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2360-2366
    • /
    • 2011
  • The Unmanned Ground Vehicle is comprised of four systems of obstacle detection: The navigation system, vehicle controlling system, obstacle detecting and an integration system that use the various sensors. The research introduced utilizes 6 lasers to recognize obstacles. The system operates an avoidance system within the unmanned ground vehicle, using six lasers. The Unmanned Ground Vehicle's parallel parking and right angle parking is in development using algorithms. This algorithms' certification is intended to be installed in the encoder, in the GPS. By using the Laser Scannerfor the position's calculation, errors are both reduced and minimized, so the tire's slip minimized to the point where the vehicle had a limit of about 5Km/h.

Vehicle Steering Characteristics Simulation by a Driver Model (운전자 모델을 사용한 차량의 조향특성 시뮬레이션)

  • Lee, J.S.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.61-68
    • /
    • 2003
  • Steering characteristics is an important factor in the evaluation of vehicle quality. To estimate steering characteristics in the vehicle conceptual design stage, vehicle dynamics simulation methods are very efficient. However, it is often difficult to simulate vehicle dynamics for the specific driving scenarios in open-loop driving environment. An efficient driver-in-the-loop vehicle model will be efficient for this job. A good tire model is also very important for the accurate vehicle dynamics simulation. In this research, a driver model is used to simulate vehicle steering dynamics for a 8-dof vehicle model with STI(Systems Technology, Inc.) tire model. For the demonstration of this model, a SUV(sports utility vehicle) and a sedan were simulated.

  • PDF

Tire and Vehicle Pull II- Basic Theory, Simulation, and Verification (타이어와 차량 쏠림 II-이론적 배경, Simulation, 실차검증)

  • 이정환;문승환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.157-164
    • /
    • 2000
  • It is known that residual aligning torque of tires causes vehicle pull. There is, however, only a little literature available which shows how the residual aligning torque of tires causes vehicle pull. In this paper, a vehicle model in two degrees of freedom was adopted for the analysis of a vehicle under the straight-ahead motion. The analysis with this vehicle model clearly shows the effect of residual aligning torque of tires on vehicle pull. In order to show the validity of the analysis, a vehicle commercially available was selected. This vehicle was modeled in 137 degrees of freedom system with multibody dynamics software. Vehicle pull simulation results show that vehicle model drifts in lateral direction due to the residual aligning torque of tires. Vehicle test results with the car were also included.

  • PDF

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.

The Effects of Design Parameter Uncertainty of the Shock Absorber on the Performance of Suspension System (충격 흡수기의 설계 파라미터 불확실성이 현가 장치 성능에 미치는 영향)

  • Lee, Choon-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.949-958
    • /
    • 2020
  • The functions of shock absorbers are to dampen body, suspend motions, dissipate impact energy, and control tire force variation. During the operation, hydraulic oil is passed between the chambers via a flow restrictions. Therefore the damping force characteristics of shock absorber is determined by the characteristics of orifices and flow restrictions. The uncertainty in design variable affects the performance of suspension system strongly. But, the researches about the influence of uncertainty in design variable such as a fluid restriction's property of shock absorber, on the suspension system performance was hardly ever proposed. In this paper, we used statistical method of Latin Hypercube sampling, and the effects of design variables uncertainty on the performance of suspension system was presented.

Mathematical Model for Dynamic Performance Analysis of Multi-Wheel Vehicle (다수의 바퀴를 가진 차량의 동적 거동 해석의 수학적 모델)

  • Kim, Joon-Young
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.35-44
    • /
    • 2012
  • In this study, a simulation program is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation program using the MATLAB/SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.