• Title/Summary/Keyword: 찢음계수

Search Result 2, Processing Time 0.015 seconds

Evaluation of J$_lc$ and T$_mat$ of aged 1Cr-1Mo-0.25V steel at elevated temperature (시효열화시킨 1Cr-1Mo-0.25V 강의 고온에서의 J$_lc$ 및 T$_mat$ 의 평가)

  • 윤기봉;윤석호;서창민;남승훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2860-2870
    • /
    • 1994
  • When crack are detected in aged turbine rotors of power plants, information on fracture resistance of the aged material at operating temperature is needed for determination of critical loading condition and residual life of the turbine. In this study, fracture toughness (J$_lc$) and tearing modulus(T$_mat$) of virgin and thermally degraded 1Cr-1Mo-0.25V steel, which is one of the most widely used rotor steels, were measured at 538.deg. C according to ASTM E813 and ASTM E1152, respectively. Five kinds of specimen with different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C.$ It was observed that J$_lc$ and T$_mat$ value decreased as the degradation level increased. Analysis of microstructures using a scanning electron microscope showed that the decrement of J$_lc$ is related to segregation of impurities at grain boundaries. It was also verified that the DC electric potential drop method is accurate and reliable for crack length monitoring at elevated temperature.

Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과)

  • Kim, Jeong-Gyu;Kim, Cheol-Su;Jo, Dong-Hyeok;Kim, Do-Sik;Yun, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.