• Title/Summary/Keyword: 집합 기반 분석

Search Result 536, Processing Time 0.034 seconds

Webtoon Search utilizing Genre Similarity with Word2Vec (Word2Vec 기반 장르 유사성을 활용한 웹툰 검색)

  • Lee, ChangMin;Ahn, JeJeong;Kang, DongYeon;Lee, Hyunah
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.503-505
    • /
    • 2019
  • 본 논문에서는 기존 웹툰 장르 검색 시스템의 단점을 보완하기 위해 키워드 기반 유사 장르 검색 시스템을 제안한다. 기존 웹툰의 장르와 키워드를 분석하여 44개의 장르를 설정하고 해당 장르에 적합한 웹툰을 수집한다. 나무위키와 위키피디아 문서로 학습된 Word2Vec모델에 기반하여 계산한 사용자 입력 키워드와 44개의 장르간 유사도로 사용자 입력에 가장 유사한 장르를 찾는다. 유사 장르에 포함되는 웹툰을 결과로 출력하여 사용자가 선호하는 장르의 웹툰을 제시한다. 실험 결과에서는 나무위키에서 '장르'로 검색하여 얻는 작은 크기의 문서 집합에서 Word2Vec을 학습한 모델에서 가장 높은 검색 성능을 보였다.

  • PDF

Developing XForms Based Mobile User Interface for Web Service Composition (서비스 조합을 위한 XForms 기반의 모바일 사용자 인터페이스 개발)

  • Lee, Eun-Jung
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.879-888
    • /
    • 2008
  • As web services have become an important architecture solution, web service composition applications are developed actively. A mobile application supporting multiple services requires a complex user interface so that the interface needs to consist of more than one view and to provide a way to navigate between views. In this paper, we presented a formal way to analyze a set of views for a given service specification, and a relation model between views and methods. We then provided an algorithm to generate codes for service method calls and navigation between views. Therefore, with an optional user configuration input, we could automatically generated XForms codes from the web service specifications. Finally, we developed a proof of concept implementation of XForms browser to show that the generated codes works well as an interface for web service compositions.

빅 데이터(Big Data)를 활용한 사업 비즈니스 운영에 관한 연구

  • Gang, Yeong-Mo;Gang, Chan-U;Han, Gyeong-Seok;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.747-753
    • /
    • 2015
  • 요즘 우리의 생활 속에서 차세대 신기술로 주목할 만한 것이 바로 "빅 데이터" 이다. 하지만 빅 데이터는 아직 구체적인 개념이 모호한 상태이다. 빅 데이터란, 기존 데이터베이스 관리도구로서 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 넘어서는 대량의 정형 또는 비정형 데이터 집합 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 이러한 분석된 데이터들은 여러 방면으로 활용이 가능하다. 이를 통해 기업에서는 비즈니스적인 활용이 가능하며 예측과 분석을 통해 사업전망을 내다볼 수도 있다. 따라서 본 논문에서는 비즈니스 모델 혁신을 위해 빅 데이터 기반 예측분석이 왜 필요한 지에 대해 논의하고 기업들이 혁신을 촉진하기 위해 사업전략 목표에 예측모델들을 활용하는 운영 모델을 제시하고자 한다.

  • PDF

P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms (개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법)

  • Ye, Wujian;Cho, Kyungsan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2014
  • In this paper, an improved two-step P2P traffic classification scheme is proposed to overcome the limitations of the existing methods. The first step is a signature-based classifier at the packet-level. The second step consists of pattern heuristic rules and a statistics-based classifier at the flow-level. With pattern heuristic rules, the accuracy can be improved and the amount of traffic to be classified by statistics-based classifier can be reduced. Based on the analysis of different decision tree algorithms, the statistics-based classifier is implemented with REPTree. In addition, the ensemble algorithm is used to improve the performance of statistics-based classifier Through the verification with the real datasets, it is shown that our hybrid scheme provides higher accuracy and lower overhead compared to other existing schemes.

Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV (컨벡스 최적화 기법 기반 전기추진 수직이착륙 무인기의 추진 시스템 고장 대처를 위한 회전익 모드 믹서 설계)

  • Jung, Yeondeuk;Choi, Hyungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.691-701
    • /
    • 2020
  • An actuator mixer design using convex optimization technique situation where the propulsion system of an electric VTOL UAV during vertical take-off and landing maneuvers is proposed. The attainable control set to analyze the impact from failure of each motor and propeller can be calculated and illustrated using the properties of the convex function. The control allocation can be defined as a convex function optimization problem to obtain an optimal solution in real time. The mixer is implemented using a convex optimization solver, and the performance of the control allocation methods is compared to the attainable control set. Finally, the proposed mixer is compared with other techniques with nonlinear sux degree-of-freedom simulation.

Feature Selection for Anomaly Detection Based on Genetic Algorithm (유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.1-7
    • /
    • 2018
  • Feature selection, one of data preprocessing techniques, is one of major research areas in many applications dealing with large dataset. It has been used in pattern recognition, machine learning and data mining, and is now widely applied in a variety of fields such as text classification, image retrieval, intrusion detection and genome analysis. The proposed method is based on a genetic algorithm which is one of meta-heuristic algorithms. There are two methods of finding feature subsets: a filter method and a wrapper method. In this study, we use a wrapper method, which evaluates feature subsets using a real classifier, to find an optimal feature subset. The training dataset used in the experiment has a severe class imbalance and it is difficult to improve classification performance for rare classes. After preprocessing the training dataset with SMOTE, we select features and evaluate them with various machine learning algorithms.

A Comparative Study on Using SentiWordNet for English Twitter Sentiment Analysis (영어 트위터 감성 분석을 위한 SentiWordNet 활용 기법 비교)

  • Kang, In-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2013
  • Twitter sentiment analysis is to classify a tweet (message) into positive and negative sentiment class. This study deals with SentiWordNet(SWN)-based twitter sentiment analysis. SWN is a sentiment dictionary in which each sense of an English word has a positive and negative sentimental strength. There has been a variety of SWN-based sentiment feature extraction methods which typically first determine the sentiment orientation (SO) of a term in a document and then decide SO of the document from such terms' SO values. For example, for SO of a term, some calculated the maximum or average of sentiment scores of its senses, and others computed the average of the difference of positive and negative sentiment scores. For SO of a document, many researchers employ the maximum or average of terms' SO values. In addition, the above procedure may be applied to the whole set (adjective, adverb, noun, and verb) of parts-of-speech or its subset. This work provides a comparative study on SWN-based sentiment feature extraction schemes with performance evaluation on a well-known twitter dataset.

XML2Star Algorithm Creating Star Schema from Source Data in XML (XML 소스 데이터로부터 스타 스키마를 생성하기 위한 XML2Star 알고리즘)

  • 최은하;김진호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.190-192
    • /
    • 2002
  • 데이터 웨어하우스는 기업의 의사 결정을 지원하기 위해 기업의 운영 데이터베이스로부터 추출한 데이터의 집합으로써 OLAP 분석에 이용된다. OLAP은 데이터에 대한 다양한 분석을 위해 이들 데이터를 다차원 데이터 모델로 표현하고 이를 활용하여 복잡한 질의 처리 및 다차원 데이터 분석에 이용한다. 이러한 OLAP의 다차원 데이터를 관계형 데이터베이스에서 표현하기 위해 스타 스키마가 널리 사용된다. 지금까지의 데이터 웨어하우스는 일반적으로 ER 도형으로 설계된 소스 데이터로부터 스타 스키마를 설계하고 구축하였다. 하지만, 최근 인터넷의 급성장으로 인해 차세대 웹 문서의 표준인 XML을 통한 인터넷 상의 문서 전송 및 정보 교환이 활발해 지고 있으며, XML 문서에 대한 다차원적인 분석이 요구됨에 따라 데이터 웨어하우스는 XML 문서로부터의 스타 스키마 설계 및 저장이 필요하게 되었다. 따라서 본 논문에서는 XML DTD로부터 애트리뷰트 트리를 생성하여 스타 스키마를 설계하고 이 DTD를 따르는 XML 문서에서 스타 스키마의 인스턴스를 추출하여 관계형 데이터베이스에 저장하기 위한 XML2Star 알고리즘을 개발하였다. 이것을 통해 기업 및 사용자는 OLAP에서 XML 기반의 스타 스키마를 이용한 다차원적인 분석이 가능하게 된다.

  • PDF

On Developing of a tool for association rule extracting from fuzzy data (퍼지 데이터로부터 연관 규칙을 추출하기 위한 도구의 개발)

  • Kang, Yu-Kyung;Hwang, Suk-Hyung;Kim, Eung-Hee
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.413-416
    • /
    • 2010
  • 오늘날, 대량의 데이터를 수집, 저장 및 관리하는 데이터베이스 기술의 진보를 기반으로, 의료, 과학, 교육, 비즈니스 등 다양한 분야에서 발생되는 대규모 데이터를 축적하게 되었다. 다양한 분야에서 축적된 대량의 데이터에 내재된 유용한 정보를 수월하게 추출하여 분석하기 위해 널리 사용되고 있는 형식개념분석기법은, 주어진 데이터로부터 정보의 최소단위로써 개념들을 추출하고, 개념들 사이의 관계를 토대로 개념계층구조를 구축하기 위한 정형화된 데이터마이닝 기법을 제공하고 있다. 본 논문에서는, 주어진 퍼지 데이터에 잠재된 유용한 정보를 추출하기 위해, 퍼지 집합 이론을 형식개념분석기법에 접목한 퍼지개념분석기법과 이를 지원하기 위해 본 연구에서 개발된 FFCA-Wizard를 소개한다. 또한, FFCA-Wizard를 사용하여 실세계 데이터를 대상으로 퍼지개념분석을 실시한 실험 결과를 보고한다.

A Text Mining-based Intrusion Log Recommendation in Digital Forensics (디지털 포렌식에서 텍스트 마이닝 기반 침입 흔적 로그 추천)

  • Ko, Sujeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.279-290
    • /
    • 2013
  • In digital forensics log files have been stored as a form of large data for the purpose of tracing users' past behaviors. It is difficult for investigators to manually analysis the large log data without clues. In this paper, we propose a text mining technique for extracting intrusion logs from a large log set to recommend reliable evidences to investigators. In the training stage, the proposed method extracts intrusion association words from a training log set by using Apriori algorithm after preprocessing and the probability of intrusion for association words are computed by combining support and confidence. Robinson's method of computing confidences for filtering spam mails is applied to extracting intrusion logs in the proposed method. As the results, the association word knowledge base is constructed by including the weights of the probability of intrusion for association words to improve the accuracy. In the test stage, the probability of intrusion logs and the probability of normal logs in a test log set are computed by Fisher's inverse chi-square classification algorithm based on the association word knowledge base respectively and intrusion logs are extracted from combining the results. Then, the intrusion logs are recommended to investigators. The proposed method uses a training method of clearly analyzing the meaning of data from an unstructured large log data. As the results, it complements the problem of reduction in accuracy caused by data ambiguity. In addition, the proposed method recommends intrusion logs by using Fisher's inverse chi-square classification algorithm. So, it reduces the rate of false positive(FP) and decreases in laborious effort to extract evidences manually.