• Title/Summary/Keyword: 집수정

Search Result 63, Processing Time 0.016 seconds

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

A Study on the Waterscape Formation Techniques of China's Suzhou Classical Garden Based on the Water Inlet and Outlet (수구(水口)를 중심으로 분석한 중국 소주고전원림(蘇州古典園林)의 수경관 연출기법)

  • RHO Jaehyun;LYU Yuan
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.116-137
    • /
    • 2024
  • This study quantitatively explored the interrelationship between water features and surrounding waterscape elements through a literature review and observational study targeting nine waterscapes of Suzhou Classical Garden in Jiangsu Province, China, which is designated as a UNESCO World Heritage Site. The purpose was to understand the objective characteristics of classical Chinese gardens and seek a basis for their differences from Korean gardens. The average area of water space in Suzhou gardens was 1,680.7㎡, which accounted for 21.3% of the total garden area, showing large variation by garden. Most of the Suzhou Gardens use springs and wells as their water sources. The Surging Waves Pavillion uses surface water, and Retreat & Reflection Garden uses seasonal water as its water source. The water pipes in Suzhou Garden are divided into a water outlet and a water outlet(water holes). Of these, the water outlet is a water outlet that imitates the water outlet just to induce a visual effect, and focuses on the meaning of the water system. It is judged to have been combined with the trend of Suzhou gardens. In addition, it was confirmed that, semantically, the arrangement of the water polo in Suzhou Garden is based on the traditional 'Gamyeo(堪輿) theory'. Meanwhile, there are five types of methods for bringing water to Suzhou Garden: Jiginbeop(直引法), Myeonggeobeop(明渠法), Invasionbeop(滲透法), Gwandobeop(管道法), and Chakjeongbeop(鑿井法). Suzhou Classical Garden mainly applies the infiltration method and the irrigation method as a method of securing water in the garden, which can be classified and defined as the water catchment method(集水法) and the water pulling method(引水法) in the domestic classification method. Among the watering techniques in Korean traditional gardens, watering methods such as 'suspension waterfall(懸瀑)', 'flying waterfall(飛瀑)' and water eluted(湧出), have not been found, and it is believed that they mainly 'rely on hide with dignity(姿逸)' and 'submerged current(潛流)' techniques. As for the watering technique, no watering technique was found that uses a Muneomi, which is applied in traditional Korean gardens. As this was applied, the seal method, penetration method, and Gwandobeop were also used in water extraction techniques. And at the inlet and outlet of Suzhou Garden, the main static water bodies were lakes, swamps, and dams. While the eastern water bodies are classified into streams, waterfalls, and springs, the water spaces in the three gardens reflect the centrifugal distributed arrangement, and the water spaces in the six places reflect the water landscape effect due to the centripetal concentrated arrangement. And as a water space landscape design technique, the techniques of 'Gyeok(隔)' and 'Pa(破)' were mainly applied at the inlet, and the techniques of 'Eom(隔)' and 'Pa(破)' were mainly applied at the outlet. For example, most bridges were built around the inlet, and sa(榭), heon(軒), gak(閣), pavilion(亭), and corridor(廊) were built, and the outlet was concealed with a stone wall. Therefore, it is understood to have embodied Suzhou Garden's idea of water(理水), which says, "Although it was created by humans, it is as if the sky is mine(雖由人作,宛自天開)."A trend was detected. Lastly, as a result of analyzing the degree of concealment and exposure in the visual composition of the inlet and outlet, it was confirmed that the water outlet was exposed only at the Eobijeong and Mountain Villa with Embracing Beauty view points of The Surging Waves Pavillion and the water outlet was hidden at other view points. Looking at these results, the 'Hyang-Hyang-Ba-Mi-Bob(向向發微法)' from the perspective of left-orientation theory of Feng Shui, which is applied in Korean traditional gardens in classical Chinese garden water management, "makes water visible as it comes in, but invisible as it goes out." It is judged that the technique was barely matched.