• Title/Summary/Keyword: 집광 소재

Search Result 6, Processing Time 0.015 seconds

The Effect of Temperature on Springback of AZ31, Ti-GR2 during V-bending with Focused Heating using Near-infrared Radiation (근적외선 집광가열 시 온도조건이 AZ31, Ti-GR2 소재 굽힘성형의 스프링백에 미치는 영향에 대한 실험적 연구)

  • Lee, E.H.;Hwang, J.S.;Lee, C.W.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.469-474
    • /
    • 2014
  • With the increased concerns of environmental issues, industries are paying more attention to lightweight metals. Because the high degree of springback is an obstacle to the widespread use of lightweight metals, many investigations have been conducted to reduce springback by increasing temperature. However, increasing the temperature of the whole die or the material is energy inefficient, since generally only a limited area of the material is deformed during sheet metal forming. As a solution to this problem, focused heating that only heats the area where plastic deformation occurs may be an alternative approach. In the current study, V-bending tests were conducted at various temperatures after the AZ31, Ti-GR2 sheets were locally heated using near-infrared (NIR) radiation in order to evaluate the effect of temperature on springback. The results of the experiment confirm that the NIR focused heating reduces the springback of AZ31, Ti-GR2 alloys with increasing temperature.

Phase-change optical media for computer data storage (컴퓨터 정보저장용 상변화형 광기록매체)

  • 김명룡
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.229-236
    • /
    • 1995
  • Multimedia has created a system environment that needs a combination of diverse peripherals, faster I/O, and easier configuration. The sheer volume of data one can expect with multimedia hardware and applications storage systems of higher capacity and faster data transfer rate. Unlike the magneto-optical(MO)disk technology which uses bias magnetic field in writing, both the reading and the writing in the phase change (PC) technology are performed only by laser light. In PC optical media, an active layer is reversibly converted between amorphous state and crystalline state by changing irradiation conditions of focused laser beam. Thus, as compared with MO disk, the PC disk has such great advantages that signals can be reproduced by change of reflectance of laser beams in the same manner as the compact disc. The reflectivity of a phase-change spot can be altered in a single pass under the head only through modulation of laser power. The principles and the current status of phase-change optical recording media combined with possible applications are discussed in the present article.

  • PDF

Growth and Photosynthetic Rate of Pinus koraiensis and Pinus rigida in Banwol Industrial Region (반월공단지역의 잣나무 및 리기다소나무의 생장과 광합성 특성)

  • 이충화;최동수;이승우;김은영;진현오;정진현;이천용;오정수
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2004
  • This study was performed to investigate the growth and photosynthetic rate of ten-years old Pinus koraiensis and Pinus rigida in Banwol industrial region comparing with those of the control site in Gwangju, Gyeonggi Province. Surface soil of the damaged site in pH 4.2 was more acidic than control site in pH 4.8, assuming the accelerated soil deterioration by acid deposition. The shoot growth, needle survival rate and net photosynthetic rate of P. koraiensis and P. rigida at the damaged site were lower than at the control site. In addition, the quantum yield and chlorophyll a+b and b contents reduced in damaged treatment. These results suggest that an inhibition of photochemical reaction of P. koraiensis and P. rigida at the damaged site of Banwol industrial region could be attributed to combined influence of atmospheric pollution and soil acidification.

  • PDF

Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers (다채널 체적식 태양열 흡수기에서 열전달 수치해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1383-1389
    • /
    • 2011
  • The current study focuses on the consistent analysis of heat transfer in multichannel volumetric solar receivers used for concentrating solar power. Changes in the properties of the absorbing material and channel dimensions are considered in an optical model based on the Monte Carlo ray-tracing method and in a one-dimensional heat transfer model that includes conduction, convection, and radiation. The optical model results show that most of the solar radiation energy is absorbed within a very small channel length of around 15 mm because of the large length-to-radius ratio. Classification of radiation losses reveals that at low absorptivity, increased reflection losses cause reduction of the receiver efficiency, notwithstanding the decrease in the emission loss. As the average temperature increases because of the large channel radius or small mass flow rate, both emission and reflection losses increase but the effect of emission losses prevails.

Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell (염료감응 태양전지를 위한 무금속 유기염료의 합성)

  • Pattarith, K.;Pungwiwat, N.;Laosooksathit, S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.279-282
    • /
    • 2011
  • Dye-sensitized solar cell (DSSC); an alternate energy source harvester has gained some attractive features such as high-energy conversion efficiency low production cost. Dye-sensitizer is a basic component of DSSC, which affecting the performance of the energy conversion efficiency. Current research has been focusing on development of high efficiency, metal-free dye-sensitizers, which would be more environmental friendly. We had successfully explored synthetic route to 6,6'-(1,2,5-oxadiazole-3,4-diyl)dipyridine-2,4-dicarboxylic acid (3A) which has been used as organic sensitizer. Investigation of light conversion efficiency (${\eta}$) of the compound uses standard measurement condition (one sun simulated irradiation, AM 1.5, 100 mW/$cm^2$) showed that it could reach 1.00% ($J_{SC}=2.63\;mAcm^{-2}$, $V_{OC}$=0.64 V and FF=0.59). Under the same conditions, the ruthenium complex (N719) gave the conversion efficiency as high as 4.02%($J_{SC}=10.50\;mAcm^{-2}$, $V_{OC}$=0.67V and FF=0.57).