• Title/Summary/Keyword: 집광형

Search Result 109, Processing Time 0.03 seconds

Preliminary System Design of STEP Cube Lab. for Verification of Fundamental Space Technology (우주기반기술 검증용 극초소형 위성 STEP Cube Lab.의 시스템 개념설계)

  • Kwon, Sung-Cheol;Jung, Hyun-Mo;Ha, Heon-Woo;Han, Sung-Hyun;Lee, Myung-Jae;Jeon, Su-Hyeon;Park, Tae-Young;Kang, Su-Jin;Chae, Bong-Gun;Jang, Su-Eun;Oh, Hyun-Ung;Han, Sang-Hyuk;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.430-436
    • /
    • 2014
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to verify the technical effectiveness of payloads such as variable emittance radiator, SMA washer, oscillating heat pipe and MEMS based solid propellant thruster researched at domestic universities. In addition, the MEMS concentrating photovoltaic power system and the non-explosive holding and separation mechanism with the advantages of high constraint force and low shock level will be developed as the primary payloads for on-orbit verification. In this study, the feasibility of the mission actualization has been confirmed by the preliminary system design.

Fabrication and Evaluation of Low Concentrator Photovoltaic Modules with Aluminium Reflectors (반사판을 이용한 저집속 집광형 태양광 모듈 제작 및 평가)

  • Jeong, Hye-Jeong;Lee, Young-Woo;Ju, Seong-Min;Lee, Ho-Jae;Boo, Seong-Jae
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.17-22
    • /
    • 2008
  • A low concentrating (< 5X) photovoltaic module with aluminum reflectors is fabricated and evaluated which is designed to reduce the affection of the high temperature to the solar cell modules preventing the efficiency lowering. As results, the output power is increased of 1.97X from the concentrating photovoltaic module which is designed with the concentrating ratio of 2.25X and to control the module temperature cooling the module by air circulation. Also, the effect of the concentrating module with aluminum reflectors on the conventional PV module is investigated at the field. The result shows the increase of the output power more than about 20% and the improvement of the module efficiency of 1.4X in spite of the increase of average module temperature.

  • PDF

A study on the fixed-concentrating hybrid panel using reflector (반사판을 이용한 고정식 집광형 복합 Panel에 대한 연구)

  • 김완태;김규조;김승환;허창수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.352-355
    • /
    • 2000
  • Although for its great amount and cleanness solar energy has been studied a lot as a substitute one, it is limitedly being utilized in heating water and partly in special usage for high cost of installing solar cell in Korea. Consider domestic shortage of natural energy resources and environmental issue by the Climate Agreement treated in 1994, it is urgently needed to study the practical application of solar energy as a substitute one. Therefore in order to increase the efficiency of solar cell and decrease its price, this study treats the course of designing and manufacturing the panel that connects sunlight by fixing reflector.

  • PDF

A Study on the Field Test of the Solar Heating System with Parabolic Solar Collectors Integrated the Roof of a Residential Building (지붕대체형 집광집열기를 이용한 태양열 난방시스템의 동절기 성능 평가)

  • Kim, Yong-Ki;Lee, Tae-Won;Yoon, Kwang-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. Despite the popularity of simple solar domestic hot water systems, active solar space heating remains, for various reasons, marginal. And thus, the aim of this paper is to demonstrate potentialities of solar assisted space heating systems, both technically and economically. From this study found that the solar heating system with CPC solar collectors integrated the roof of a single-story residential building shares $50{\sim}55%$ of the annual heating load.

Self-aligning Characteristics of Optical Sheets with Apertures (배면개구형 집광시트의 자체 정렬 특성)

  • Park, Gyeung-Ju;Kim, Young-Gyu;Choi, Gye-Hun;Baik, Sang-Hoon;Hwang, Sung-Ki;Gwag, Jin-Seog;Yi, Jong-Hoon;Kwon, Jin-Hyuk;Park, Yi-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.301-307
    • /
    • 2009
  • Optical sheets with apertures on the opposite side of the substrate are designed and analyzed in order to use them as high efficiency light concentration sheets in LCD edge-lit backlight. Formation of apertures by self-aligning exposure were analyzed for the microlens array sheet, pyramid array sheet, and cone array sheet and the microlens array sheet showed the best performance for the formation of apertures by the self-aligning exposure.

Thermal Vacuum Test and Thermal Analysis for a Qualification Model of Cube-satellite STEP Cube Lab. (큐브위성 STEP Cube Lab.의 임무 탑재체 인증모델의 열진공시험 및 열모델 보정을 통한 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Han, Sung-Hyun;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.156-164
    • /
    • 2016
  • Qualification model(QM) of main payloads including concentrating photovoltaic system using fresnel lens, heating wire cutting type shockless holding and release mechanism, and MEMS-based solid propellant thruster have been developed for the STEP Cube Lab.(Cube Laboratory for Space Technology Experimental Project), which is a pico-class satellite for verification of core space technologies. In this study, we have verified structural safety and functionality of the developed payloads under a qualification temperature range through the QM thermal vacuum test. Additionally, a reliability of thermal model of the payloads has been confirmed by performing a thermal correlation based on the thermal balance test results.

Un-Cooled High Efficient Solar Lighting System and its Application (비냉각형 고효율 태양광 채광시스템 및 응용에 관한 연구)

  • Lee, Hoe-Youl;Kim, Myoung-Jin;Shin, Seo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1394-1402
    • /
    • 2011
  • This paper describes solar light collecting system which employs parabolic reflector and Fresnel lens and its industrial application. We have introduced second-stage optical system so that it makes optical fiber overcome its numerical aperture limitation and also it makes focused light become collimated, which results in decreased light energy density. As result of these, light collecting efficiency become maximized and the system does not require separate cooling apparatus any more. The developed solar lighting system together with artificial light source like LED has been applied to plant factory as a hybrid lighting source. This makes us save electric energy for artificial lighting during day time. The intensity of LED light in the hybrid lighting system is controlled automatically according to ambient-light-sensor installed in the system so that the light intensity for a plant always keeps the same level no matter how the sun light changes. For a plant factory whose size is 330 square meters, when solar lighting system is applied, 28,080KWh electric energy can be saved per month.2 times.

Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system (접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Kim, Jong-Kyu;Kim, Jin-Soo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF