• Title/Summary/Keyword: 집과 같은 환경

Search Result 357, Processing Time 0.026 seconds

Laboratory and Full-scale Testing to Investigate the Performance of Rock Fall Protection System with Hexagonal Wire Net (육각 낙석방지망의 성능평가를 위한 실내 및 실대형실험)

  • Youn, Ilro;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.69-75
    • /
    • 2014
  • Rock fall protection system installed against rock slope is one of the most conventional way to protect nearby infra structures. Despite of wide application of typical rectangular nets, virtually installed to protect rock slope face, several problems have also been pointed out up to date. Rectangular draped nets are vulnerable to a sudden external shock such as rock fall, because it doesn't have any systematical buffers or shock absorbers. Furthermore, it has been widely recognized from the some cases of rock fall accident in Korea that rock fall protection nets cause wide range of failure in the rock slope faces due to insufficient pullout bearing capacity of fixing parts. Therefore, in this study, we tried to make a consideration about the problems of existing standard rock fall protection nets in Korea, and develop a new type of hexagonal net with a shock absorber based on design rock fall energy. In this paper, laboratory and full scale test procedure is described to analysis the performance of newly developed hexagonal rock fall net, and the key results are presented and discussed.

Experimental Study on Evaluation of Rotational Resistance of Multi-Span Greenhouse Foundations (연동비닐하우스 기초의 회전저항성능 평가에 관한 실험적 연구)

  • Lee, Hyunjee;Shin, Jiuk;Kim, Minsun;Choi, Kisun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.5-12
    • /
    • 2018
  • The foundation of the multi-span greenhouse structures is designed with small shallow concrete foundation considering mainly the vertical load. However, recently, due to an abnormal climate such as strong wind, horizontal load and up-lift load over design strength are applied to the foundation, causing safety problems of the greenhouse foundation. In order to reasonably evaluate the safety of greenhouse foundations, rotational and pullout stiffness expressed by the ground-foundation interaction should be evaluated, which also affects the safety of the upper structural members. In this study, three representative basic foundation types were selected by classifying greenhouse standards in Korea according to the shape, and the horizontal loading tests and theoretical calculation were performed for each foundation type. As a result of the comparison and analysis of the test and calculation, it was found that rotational resistance of the foundation is different according to the ratio of the contact area between the foundation and ground when the conditions of the foundation - ground contact surface and the mechanical properties of the ground are the same.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

Speech Recognition for the Korean Vowel 'ㅣ' based on Waveform-feature Extraction and Neural-network Learning (파형 특징 추출과 신경망 학습 기반 모음 'ㅣ' 음성 인식)

  • Rho, Wonbin;Lee, Jongwoo;Lee, Jaewon
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.69-76
    • /
    • 2016
  • With the recent increase of the interest in IoT in almost all areas of industry, computing technologies have been increasingly applied in human environments such as houses, buildings, cars, and streets; in these IoT environments, speech recognition is being widely accepted as a means of HCI. The existing server-based speech recognition techniques are typically fast and show quite high recognition rates; however, an internet connection is necessary, and complicated server computing is required because a voice is recognized by units of words that are stored in server databases. This paper, as a successive research results of speech recognition algorithms for the Korean phonemic vowel 'ㅏ', 'ㅓ', suggests an implementation of speech recognition algorithms for the Korean phonemic vowel 'ㅣ'. We observed that almost all of the vocal waveform patterns for 'ㅣ' are unique and different when compared with the patterns of the 'ㅏ' and 'ㅓ' waveforms. In this paper we propose specific waveform patterns for the Korean vowel 'ㅣ' and the corresponding recognition algorithms. We also presents experiment results showing that, by adding neural-network learning to our algorithm, the voice recognition success rate for the vowel 'ㅣ' can be increased. As a result we observed that 90% or more of the vocal expressions of the vowel 'ㅣ' can be successfully recognized when our algorithms are used.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

Estimating Groundwater Level Variation due to the Construction of a Large Borrow Site using MODFLOW Numerical Modeling (대규모 토취장 개발 예정 지역의 수치모델을 이용한 지하수위 변동 예측)

  • Ryu, Sanghun;Park, Joonhyeong;Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.15-23
    • /
    • 2012
  • A numerical model and field monitoring data are used to estimate a change in groundwater level at a borrow site, which will be constructed at the mountainous area with a large ground excavation in the study area, Hwaseong city. Lithologic data and hydraulic coefficients are collected at 9 boreholes and also groundwater levels are measured at these boreholes and existing wells in the study area. Additionally, groundwater recharge rate for the type of land cover is estimated using water budget analysis; 133.34mm/year for a mountainous area, 157.68mm/year for a farming area, 71.08mm/year for an urbanized area, and 26.06mm/year for a bedrock exposure area. The change in groundwater level in and around a borrow site is simulated with Modflow using these data. The result of a transient model indicates that a removal of high ground (over 40El.m) by an excavation will produce a decrease in groundwater levels, up to 1 m, around a borrow site in 10 years. It also explains that this ground excavation will bring about the decreases of 9.4% and 7.0% for groundwater recharge and surface runoff, respectively, which are the factors causing groundwater level's change. This study shows that it is required to construct the groundwater monitoring wells to observe the change of groundwater near a borrow site.

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

An Experimental Study on Sedimentation-Consolidation Characteristics for Marine Clay in Korea (국내 해성점토의 침강압밀특성에 관한 실험적 연구)

  • Jun, Sanghyun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.89-98
    • /
    • 2009
  • In this research, settling tests with marine clays in Korea and extensive literature review were performed to investigate the characteristics of sedimentation and consolidation so that their behaviors during dredging and reclamating could be evaluated. Design parameters related to Yano's method (1985), one of experimental approaches having been used widely in Korea to estimate sedimentation and consolidation, were analyzed and their proprieties were reassessed. For samples from four different sites of south and west coasts in Korea respectively, settling tests with 1m height of columns were carried out, changing initial water content and height of sample in order to evaluate settling and consolidation characteristics of them from analyzing test results. More reliable regression curves than values from literature review were obtained as analyzing test results of estimating coefficient of sedimentation/ consolidation and initial setting velocity with changing initial water content. Relation between height of soil solid and surface height of slurry at the stages of initiation and termination of consolidation was also assessed. Finally, for marine clays of south and west coasts of Korea, ranges and average values of these design parameters were evaluated and typical empirical equations between these design parameters were also proposed. On the other hand, comparisons of characteristics of sedimentation and consolidation between marine clays from south coast and them from west coast were also performed.

  • PDF

The Evaluation Applying Limit State Method for the Concrete Retaining Wall Structures (콘크리트 옹벽구조물의 한계상태설계법 적용성 평가)

  • Yang, Taeseon;Jeong, Jongki;Seo, Junhee;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.59-66
    • /
    • 2014
  • Nowadays, some studies are performed in order to introduce the Limit State Design method widely used in foreign work sites. LRFD (Load Resistance Factor Design) method is widely used in the fields in which the data accumulation is possible - such as deep foundations, and shallow foundations, etc. The limit state design in the retaining walls is insufficient in the country owing to difficulties applying load tests. The limit state design method for retaining wall structures are studied based upon the National Retaining wall Design Standard legislated in 2008 by Ministry of Land, Transport, and Maritime Affairs. In this paper several retaining walls were calculated according to LRFD design criteria analysis using the general program with limit state design method and the factor of safety for sliding and overturning. Comparing with their results, the Taylor's series simple reliability analysis was performed. In the analysis results of retaining wall section, safety factors calculated by LRFD were found to be lowered than those calculated in current WSD, and it is possibly judged to be economic design by changing wall dimensions. In the future, pre-assessment of the geotechnical data for ensuring the reliability and the studies including reinforced retaining walls with ground anchor are needed.