A stream processor uses resource sharing method for efficient of limited resource in multiple continuous queries. The previous methods process aggregate queries to consist the level structure. So insert operation needs to reconstruct cost of the level structure. Also a search operation needs to search cost of aggregation information in each size of sliding windows. Therefore this paper uses linear structure for optimization of sliding window aggregations. The method comprises of making decision, generation and deletion of panes in sequence. The decision phase determines optimum pane size for holding accurate aggregate information. The generation phase stores aggregate information of data per pane from stream buffer. At the deletion phase, panes are deleted that are no longer used. The proposed method uses resources less than the method where level structures were used as data structures as it uses linear data format. The input cost of aggregate information is saved by calculating only pane size of data though numerous stream data is arrived, and the search cost of aggregate information is also saved by linear searching though those sliding window size is different each other. In experiment, the proposed method has low usage of memory and the speed of query processing is increased.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.6
/
pp.581-590
/
2017
This study analyzes the effect of floating population, locational characteristics and spatial autocorrelation on foodservice sales using big data provided by the Seoul Institute. Although big data provided by public sector is growing recently, research difficulties are occurred due to the difference of aggregation units of data. In this study, the aggregation unit of a dependent variable, sales of foodservice is SKT unit but those of independent variables are various, which are provided as the aggregation unit of Korea National Statistical Office, administration dong unit and point. To overcome this problem, we convert all data to the SKT aggregation unit. The spatial error model, SEM is used for analysing spatial autocorrelation. Floating population, the number of nearby workers, and the area of aggregation unit effect positively on foodservice sales. In addition, the sales of Jung-gu, Yeongdeungpo-gu and Songpa-gu are less than that of Gangnam-gu. This study provides implications for further study by showing the usefulness and limitations of converting aggregation units of heterogeneous spatial data.
For accurate demand forecasting of railway logistics, we estimated intercity freight mode choice models based on the binary logit model and using production-consumption data from the Korea Transport Database. We estimated two types of models and compared the results by major item of railway logistics, such as container, cement, and steel: 1) The aggregate freight mode choice models are based on the revealed preference (RP) data and 2) The disaggregate models are based on the stated preference (SP) data. With respect to the container, the travel time variable was found to be statistically significant; however, the travel cost variable was not statistically significant in the RP model, while the travel cost variable was statistically significant in the SP model. For cement and steel, the travel cost variables were statistically significant but the travel time variables were not statistically significant in either the RP or the SP models. These results are inconsistent with results from previous studies based on SP data, which showed that the travel time variables were significant. Consequently, it can be concluded that the travel time factor should be considered in container transport, but that this factor is negligible for cement and steel transport.
Journal of Korea Spatial Information System Society
/
v.9
no.3
/
pp.1-16
/
2007
A spatial data warehouse is a system to support decision making using a spatial data cube. A spatial data cube is composed of a dimension table and a fact table. For decision support using this spatial data cube, the concept hierarchy of spatial dimension and the summarized information of spatial fact should be provided. In the previous researches, however, spatial summarized information is deficient. In this paper, the spatial aggregation for spatial summarized information in a spatial data warehouse is proposed. The proposed spatial aggregation is separated of both the numerical aggregation and the object aggregation. The numerical aggregation is the operation to return a numerical data as a result of spatial analysis and the object aggregation returns the result represented to object. We provide the extended struct of spatial data for spatial aggregation and so our proposed method is efficient.
The temporal aggregate in temporal databases is an extension of the conventional aggregate to include the time on the range condition of aggregation. It is a useful operation for Historical Data Warehouses, Call Data Records, and so on. In this paper, we propose a structure for the temporal aggregation with multiple selection predicates, called the ITA-tree, and an aggregate processing method based on the structure. In the ITA-tree, we transform the time interval of a record into a single value, called the T-value. Then, we index records according to their T-values like a $B^+$-tree style. For possible hot-spot situations, we also propose an improvement of the ITA-tree, called the eITA-tree. Through analyses and experiments, we evaluate the performance of the proposed method.
Stream data is a continuous flow of information that mostly arrives as the form of an infinite rapid stream. Recently researchers show a great deal of interests in analyzing such data to obtain value added information. Here, we propose an efficient cube computation algorithm for multidimensional analysis of stream data. The fact that stream data arrives in an unsorted fashion and aggregation results can only be obtained after the last data item has been read. cube computation requires a tremendous amount of memory. In order to resolve such difficulties, we compute user selected aggregation fables only, and use a combination of an way and AVL trees as a temporary storage for aggregation tables. The proposed cube computation algorithm works even when main memory is not large enough to store all the aggregation tables during the computation. We showed that the proposed algorithm is practically fast enough by theoretical analysis and performance evaluation.
우리 국민의 교통수요행태를 분석하기 위하여 준이상수요체계(almost ideal demand system) 함수형태의 집계교통수요모형을 설정하였다. 대중교통수단으로서 시내버스, 시외버스, 택시, 기차, 전철이 그리고 개인교통수단으로서 연료비가 포함되었으며, 기타재화 및 서비스에 대한 소비지출이 함께 추정되었다. 추정에 이용된 자료는 통계청의 "도시가계연보"에 수록된 '전국 도시가구 소비지출'과 "물가통계"에 수록된 '전국 도시소비자 물가'이다. 추정결과 모형의 설명력을 나타내는 수정결정계수(adjusted-$R^2$)는 대부분 0.9 내외에서 높게 나타났다. 추정계수는 총 51개중에서 25개가 5% 수준에서 유의한 것으로 나타났다. 추정된 계수값을 이용하여 가격탄력성과 소득탄력성을 구하였다. 자기가격탄력성과 소득탄력성 추정치는 조금 높기는 하나 부호와 상대적 크기가 모두 예상과 일치하고 다른 연구결과들과 유사한 범위에 있다. 연료비에 대한 소득탄력성은 1.72로 가장 높게 나타났고, 대중교통수단은 0.03~0.49 사이에서 나타나므로 교통수단이 정상재임을 의미한다. 보상수요의 교차가격탄력성은 총 15개의 교차관계에서 12개의 관계가 상식과 일치한다. 다음 연구에서는 더 많은 시계열자료를 발굴하여, 장기간의 교통수요 변화에 대한 분석을 시도할 필요가 있다. 또한 초월대수함수나 동태함수 등 다양한 형태의 수요함수를 시도할 필요가 있다. 여러가지 형태의 교통수요함수추정을 통해서 우리 현실에 적합한 교통수요모형을 발견할 수 있을 것이다. 대도시와 중소도시 등 지역별 지출자료를 발굴하여 지역특성을 반영하는 교통수요함수의 추정도 필요하다.
토지보상관련 법을 관장하고 있는 국토해양부는 "국토기본법" 제24조의 규정에 따라 용지보상 등을 포함한 국토의 계획 및 이용의 주요시책에 관한 보고서를 매년 정기국회의 개회전까지 국회에 제출하여야 한다. 이 보고서에는 국가보상에 관한 주요통계자료가 포함되는데 이러한 공공용지의 취득 및 손실보상 실적은 보상관련 정책의 수립과 제도개선 및 부동산정책 등에 중요한 기초 자료로 활용되고 있다. 하지만 90여개 기관을 대상으로 9개 양식을 수작업으로 취합하다 보니 시간소요 및 통계오류 등이 발생할 소지가 있어 국가통계의 신뢰도가 저하될 소지가 있다. 이에 정확한 보상통계자료 제공 및 업무의 효율성 제고를 위해 공공용지 취득실적 집계 자동화방안을 제시하고자 한다.
Outsourcing databases is to offload storage and computationally intensive tasks to the third party server. Therefore, data owners can manage big data, and handle queries from clients, without building a costly infrastructure. However, because of the insecurity of network systems, the third-party server may be untrusted, thus the query results from the server may be tampered with. This problem has motivated significant research efforts on authenticating various queries such as range query, kNN query, function query, etc. Although aggregation queries play a key role in analyzing big data, authenticating aggregation queries has not been extensively studied, and the previous works are not efficient for data with high dimension or a large number of distinct values. In this paper, we propose the AMR-tree that is a data structure, applied to authenticate aggregation queries. We also propose an efficient proof construction method and a verification method with the AMR-tree. Furthermore, we validate the performance of the proposed algorithm by conducting various experiments through changing parameters such as the number of distinct values, the number of records, and the dimension of data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.