• Title/Summary/Keyword: 짐벌시스템

Search Result 21, Processing Time 0.025 seconds

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

Development of Integrated drone measurement system for Flood discharge measurement (홍수기 유량측정을 위한 통합 드론측정시스템 개발)

  • Tae Hee Lee;Jong Wan Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.82-82
    • /
    • 2023
  • 홍수기 하천에서 유량측정은 예산, 인력, 안전 및 측정 시 편의성 등의 이유로 측정에 제한이 많다. 특히, 태풍 등으로 인한 호우사상 발생 시 위와 같은 문제로 홍수량 측정에 어려움이 따른다. 이러한 문제점을 개선하기 위해 Lee et al.(2021)은 드론과 전자파표면유속계의 기능을 융합한 DSVM(Dron and Surface Veloctity Meter using doppler radar) 측정방법을 개발하였다. 전자파표면유속계 측정의 제한 요소인 진동을 감소시키기 위해 댐퍼플레이트를 개발하였고 금강의 지류인 봉황천에 현장 적용을 통해 DSVM 측정방법의 실용성을 확인하였다. 기존 연구에서 DSVM 방법은 드론의 각 측선 이동을 위한 조종과 전자파표면유속계 측정의 제어를 측정자가 수행하였는데 본 연구에서는 통합 드론측정시스템(IDMS, Integrated Drone Measurement System) 개발을 통해 측정자의 조종 의존도를 줄임과 동시에 안전하고 정확한 유량측정을 위해 노력하였다. 기존 댐퍼플레이트의 상하 진동 흡수 기능뿐만 아니라 전자파표면유속계의 흔들림 현상 등 자세 제어 기능을 보완하기 3축 모터를 적용한 방수짐벌을 개발하여 측정 정확도를 향상시켰다. 미션컴퓨터 개발로 측정지점의 측정 임무정보를 DB화하여 각 측선별 헤딩, 고도, 이동 등 자동항법 기능과 기체의 안정화 이후 전자파표면유속계를 자동으로 제어하여 측정을 실시하는 기능을 구현하였다. 또한 통합 GCS(Ground Control System)를 통해 비행 및 측정에 대한 모든 정보를 확인하고 컨트롤 할 수 있게 하였다. 2022년 금산군(제원대교), 무주군(취수장), 경주시(서천교) 지점에서 홍수기 유량측정에 도입하여 중간단면적법, 지표유속법을 적용하여 통합드론측정시스템의 실용성을 검증 완료하였다. 2023년 현장에 18대의 통합 드론측정시스템을 도입하여 홍수기 유량측정에 활용할 계획이다.

  • PDF

Small/Fast Moving Target Tracking base on Correlation Filter in Clutter Environment (클러터 환경에서 correlation filter기반 소형 고속 이동 표적 추적 시스템)

  • Jung, Young-Giu;Sun, Sun-Gu;Lee, Eui-Hyuk;Joo, Yong-Kwan;Kim, Taewan;Lee, Young-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.93-98
    • /
    • 2019
  • On today, optical system are the next generation weapon systems being studied in many countries, starting from USA. One of the most important technologies in optical system is a high-speed automatic target tracking system that can continuously track high-speed moving small targets. This paper designs an automatic target tracking system based on a correlated trekker that is robust against rapid shape changes for fast moving targets and small targets at a distance. The proposed system showed about 98% success rate in response to the targets that are under a complex background such as drone, ranger, etc.

A Haptic Master-slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • In this work, 4-DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery(MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4-DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

A Haptic Master-Slave Robot System : Experimental Performance Evaluation for Medical Application (의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가)

  • Oh, Jong-Seok;Shin, Won-Ki;Nguyen, Phuong-Bac;Uhm, Chang-Ho;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.421-427
    • /
    • 2012
  • In this work, 4 DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery (MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4 DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

  • PDF

Least Squares Method-Based System Identification for a 2-Axes Gimbal Structure Loading Device (2축 짐벌 구조 적재 장치를 위한 최소제곱법 기반 시스템 식별)

  • Sim, Yeri;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.288-295
    • /
    • 2022
  • This study shows a system identification method of a balancing loading device for a stair climbing delivery robot. The balancing loading device is designed as a 2-axes gimbal structure and is interpreted as two independent pendulum structures for simplifying. The loading device's properties such as mass, moment of inertia, and position of the center of gravity are changeable for luggage. The system identification process of the loading device is required, and the controller should be optimized for the system in real-time. In this study, the system identification method is based on least squares method to estimate the unknown parameters of the loading device's dynamic equation. It estimates the unknown parameters by calculating them that minimize the error function between the real system's motion and the estimated system's motion. This study improves the accuracy of parameter estimation using a null space solution. The null space solution can produce the correct parameters by adjusting the parameter's relative sizes. The proposed system identification method is verified by the simulation to determine how close the estimated unknown parameters are to the real parameters.

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

A Study on AR-based Interface Technique for efficient UAV Operation using a See-through HMD (투시형 HMD를 이용한 효율적인 UAV 운용을 위한 증강현실 기반의 인터페이스 기법에 대한 연구)

  • Wan Joo Cho;Hyun Joon Chang;Yong Ho Moon
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.9-15
    • /
    • 2023
  • In order to effectively prevent and respond to disasters, several techniques have been developed in which the pilot wearing a see-through Head Mounted Display (HMD) performs disaster-related rescue activities using images transmitted from an Unmanned Aerial Vehicle (UAV). However, these techniques have limitations in quickly determining and executing tasks appropriate to the on-site situation because the pilot cannot recognize the entire field in an integrated manner. In order to overcome these problems, we propose an AR based-interface technique that allows the rescuer wearing a see-through HMD to operate a UAV efficiently. Simulation results show that the proposed interface technique allows the rescuer wearing a see-through HMD to control the gimbal and flight of the UAV at a high speed based on finger gestures in a visibility situation.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.