• Title/Summary/Keyword: 질화처리

Search Result 284, Processing Time 0.026 seconds

Surface Observation of TiAlN Coatings by a Cathodic Arc : Effects of Cleaning Process Conditions (음극 아크를 이용 청정공정 조건에 따른 TiAlN 박막의 표면관찰)

  • Kim, Seong-Hwan;Yang, Ji-Hun;Song, Min-A;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.56-56
    • /
    • 2014
  • 티타늄-알루미늄-질화물(TiAlN)은 고능률 절삭 분야에 사용되는 공구의 수명 향상을 위한 표면처리 소재로 많이 이용되고 있다. 음극 아크로 코팅할 경우, 거대 입자가 박막 표면에 존재하여 박막의 품질을 저하시킨다. 본 연구에서는 공구의 수명을 향상시키는 TiAlN 박막을 TiAl 합금 타겟을 이용하여 형성하였으며, 거대입자의 생성을 줄일 수 기판 청정공정을 도출하였다. 그리고 따른 박막표면을 관찰하였다.

  • PDF

Quality Improvement of Smart UAV Rotor-Hub Part Through Gas Nitriding of Maraging Steel (가스질화처리 적용을 통한 스마트무인기 머레이징강 로터허브 부품 품질개선)

  • Lee, Myeong Kyu;Choi, Seong Wook;Kim, Jai Moo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • Feathering spindle is one of the critical parts of the rotor system in the Smart Unmanned Aerial Vehicle(SUAV) that it was manufactured with special material, Maraging C300. During the initial ground and tie-down flight tests of the SUAV, surface of the feathering spindle contacting to the needle-roller bearings showed excessive wear and dent due to high vibrating loads transferred from the rotating blades. Gas nitriding process was applied to the bearing contact surface of the feathering spindle to increase surface hardness so as to improve the surface defects. This paper briefly presents the gas nitriding process adopted and the spindle quality improvements including wear and corrosion resistance.

Effect of Surface Roughness on Nitriding of Aluminum by Electron Cyclotron Resonance Plasma (ECR 플라즈마에 의한 알루미늄 질화처리시 표면조도의 영향)

  • 김진수;안재현;고경현;오수기
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.215-221
    • /
    • 1991
  • Microstructure evolution during low temperature vapor deposition exhibits wel-developed columnar structure mainly owing to geometrical shadowing effect of surface roughness. It is concluded that this structure is concided with many theoretical models suggested so far. In case of aluminum nitride film deposition consisted of etching and nitriding step employing ECR plasma, the rougher the surface before etching, the finer and more cone-and-whisker structure can be developed. In turn, this fine structure affects the formation and growth of columnar as well as offers many sites available for mechanical lock-up. Conclusively, the formation of well-defined columnar structures depends on the initial surface roughness.

  • PDF

Measurement of the Thermal Physical Properties of Nitrided Steels (질화처리강의 열물성치측정)

  • Son, Byung-Jin;Lee, Kwan-Soo;Lee, Hung-Joo;Kim, Sung-Kun;Kim, Ho-Jun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.4
    • /
    • pp.275-284
    • /
    • 1985
  • The thermophysical property values were determined and compared with each other according to the tine of surface treatment. The diffusivity values were obtained by the flash method, and the specific heat values were measured by the differential scanning density. The thermal conductivity values were calculated from the values of the thermal diffusivity, specific heat, and density. The nitrided steels were the structural carbon steels, carbon tool steels, alloy tool steels, and high speed tool steels.

  • PDF

Effect of Reheating on the Ion-nitrided Surface Microstructure of AI-Cr-Mo Steel (이온질화처리된 AI-Cr-Mo 강의 재가열 처리에 의한 표면조직변화)

  • Lee, J.I.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • In this study the improvement of mechanical properties of ion-nitrided SACM-1 steel was investigated by analysing microstructural developments and hardness increase in the nitrided surface layer. Specimens were quenched at $570^{\circ}C$, which is lower than the eutectoid temperature ($590^{\circ}C$) of Fe-N binary system after nitrided at temperature of $460-570^{\circ}C$ for 2-8 hours under constant pressure of 8 torr. The depths of diffusion and compound layers were appeared to proportional to the root mean square time of nitriding. And the hardness showed the maximun value Hv = 1200 for the specimen nitrided at $530^{\circ}C$. Hardness distribution of the. ion-nitrided steels were increased by diffusion treatment below the eutectoid temperature of the Fe-N binary system. A prolonged heat treatment below the eutectoid temperature was attributed to the increase in the depth of diffusion layer at the expense of the decrease in surface hardness of the ion nitreded steel.

  • PDF

Tungsten silicide 의 이상산화

  • 이재갑;김창렬;김준기;나관구;김우식;최민성;이정용
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.22-22
    • /
    • 1993
  • Tungsten silicide는 낮은 전도도, 높은 녹는점, pattern 형성에 용이함등으로 VLSI device Interconnect(Bit line)로 활발하게 이용되고 있다. 일반적으로 Tungsten silicide 는 polycide(WSi$_2$/poly-Si)구조로 사용이 되며, polycide 구조는 산화분위기에서 WSi$_2$위에 SiO$_2$막을 쉽게 형성시키는 장점이 있다. As-dep상태의 polycide를 산화시킬적에는 텅스텐 실리사이드에 존재하는 excess-silicon과 microcrystalline 구조 (grain size=3$\AA$)로 인하여 텅스텐 실리사이드 표면에 균일한 SiO$_2$가 형성이 된다. 그러나 post-anneal을 실시한 샘플 Furnace anneal ($N_2$:O$_2$유량비=2:1) 처리하면 성장된 텅스텐 실사이드 입자의 입계효과에 의하여 텅스텐 실리사이드의 표면에 SiO$_2$뿐만 아니라 WO$_3$가 형성되는 이상산화가 발생되어 공정의 어려움을 야기시키고 있다. 본 실험에서는 post anneal ($700^{\circ}C$, 30min, $N_2$ 분위기) 시킨 시편을 Implantation(As 또는 phosphorous)을 실시하여 실리사이드 표면을 비정질화 시킨후 Furnace anneal 실시하여 이상산화 발생 억제에 I/I처리가 미치는 효과를 관찰하였다. XPS를 이용하여 이상산화막 두께와 WO$_3$존재를 조사하였고, AES를 사용하여 W, Si, O 원소들이 깊이에 따라 변하는 것을 관찰하였다.

  • PDF

The effects of post nitriding on the AISI 316 stainless steel after Plasma carburizing at various gas compositions (저온 플라즈마침탄처리된 316L 스테인레스 스틸의 플라즈마 후질화 처리시 표면특성에 미치는 가스조성의 영향)

  • Lee, In-Seop;Debnath, Sanket
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.177-178
    • /
    • 2012
  • In this experiment, post-nitriding treatment has been performed at $400^{\circ}C$ on AISI 316 stainless steel which is plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% N2, 50% N2 and 75% N2) for 4 hours. Additionally, during post nitriding Ar gas was used with H2 and N2 to observe the improvement of treatment. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduces the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% N2 gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment were degraded the corrosion resistance of the sample compared with the carburized sample.

  • PDF

Development of Controlled Gas Nitriding Furnace(II) : Controlled Gas Nitriding System and its Hardware (질화포텐셜 제어 가스질화로 개발(II) : 제어시스템 및 하드웨어)

  • Won-Beom Lee;Won-Beom Lee;YuJin Moon;BongSoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.86-95
    • /
    • 2023
  • This paper explained the equipment and process development to secure the source technology of controlled nitrification technology. The nitriding potential in the furnace was controlled only by adjusting the flow rate of ammonia gas introduced into the furnace. In addition, a control system was introduced to automate the nitriding process. The equipment's hardware was designed to enable controlled nitriding based on the conventional gas nitriding furnace, and an automation device was attached. As a result of measuring the temperature and quality uniformity for the equipment, the temperature and compound uniformity were ±1.2℃ and 14.3 ± 0.2 ㎛, respectively. And, it was confirmed that nitriding potential was controlled within the tolerance range of AMS2759-10B standard. In addition to parts for controlled nitriding, it was applied to products produced in existing conventional nitriding furnaces, and as a result, gas consumption was reduced by up to 80%.

Removal of Ammonium-Nitrogen {$NH_4^+$ -N) Using Immobilized Nitrifier Consortium in PVA(PolyvinylalcohoI) (PVA에 고정화된 Nitrifier Consortium을 이용한 암모니아성 질소의 제거)

  • 서재관;서근학;김성구
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 1999
  • The immobilization of nitrifier consortium was carried out for the application to recirculating aquaculture system(RAS). The abilities of $NH_4^+$-N removal by immobilized nitrifier consortia prepared with boric acid treated, ethanol treated, ad freezing-thawing treated PVA beads at the concentration 15% were examined. To identify the possibility of applying the beads in the fluidized bed reactor, characteristics of beads were evaluated. The suitable bead was boric acid treated beads which had highest ammonia removal rate of 16.09 g/$m^3$/day. It took 12 days for nitrifier consortium immobilized beads to be stable for the removal of $NH_4^+$-N. Life spans of the beads were more than three months with aggressive aeration in the fluidized ed reactor when nitrifier consortia immobilized in PVA beads were used. In order to apply the nitrifier consortium immobilized beads to aquaculture facility, the continuous reactor was used for 49 days with synthetic aquacultural water containing 2 mg/L ammonia. The highest ammonia removal rate of 31.87 g/$m^3$/day was observed when hydraulic residence time was 0.6 hour(36min.).

  • PDF

Effects of the Precipitation of Carbides and Nitrides on the Textures in Extra Low Carbon Steel Sheets containing B, Nb and Ti(l) (B,Nb 및 Ti 를 함유한 극저탄소강에서 탄화물 및 질화물의 석출이 집합조직에 미치는 영향(I)-집합조직과 기계적 성질-)

  • Lee, Jong-Mu;Yoon, Kuk-Hoon;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Excellent deep drawability and strain aging rsistance are obtained by the addition of alloying elements such as Ti and Nb which can form carbide and nitride easily into Al killed extra low carbon steel. Recrystallization textures and mechanical properties of the three different extra low carbon steels with B containing Nb only, Ti only, and both Nb and Ti, respectively, along with have been compared. Inverse pole figure shows that (100) and (111) texture intensities of Nb containing steel changed a lot during the annealing treatment and the degree of texture-structural change in the steel containing both Nb and Ti is about the same as that in the Ti-containing 5teel. After annealing the pole figure shows that the {Ill} < 110 > and {112} < 110> textures are the strongest in the cold rolled state and the annealed state, respectively. However, there is little difference in texture structure among the three kinds of steels. There is a tendency that the steel containing both Nb and Ti the grain size of which is the smallest is the highest in hardness. Nb-containing steel is the next and Ti -containing steel is the last in hardness.

  • PDF