• Title/Summary/Keyword: 질의클러스터링

Search Result 154, Processing Time 0.023 seconds

Health Diagnosis System of Pet Dog Using ART2 Algorithm (ART2 알고리즘을 이용한 애견 진단 시스템)

  • Oh, Sei-Woong;Kim, Ji-Hong
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, we propose the diagnosis system that can predict pet's state of health for pet lovers lacking a technical knowledge of dog-diseases. The proposed system deduces diseases of dogs from input symptoms by our database constructed with 105 kinds of diseases and symptoms. First, a disease is clustered by ART2, the self-learning method in neural network and secondly, the result values, outputs and the weight values clustered by the algorithm are stored to database. Finally, our system diagnoses the state of health by means of comparing the learned information of diseases with the input vectors of each symptom and the related results of questions on diseases. The correct information of diseases and symptom diagnosing is important to predict the state of health of dogs. Therefore, in this paper, the proposed system can manage symptoms and diseases efficiently by database and ART2. We ask veterinary specialist with the efficiency of our system. As a result, we could confirm the possibility as the auxiliary diagnosis system for dog diseases.

  • PDF

Improving Accuracy of Chapter-level Lecture Video Recommendation System using Keyword Cluster-based Graph Neural Networks

  • Purevsuren Chimeddorj;Doohyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.89-98
    • /
    • 2024
  • In this paper, we propose a system for recommending lecture videos at the chapter level, addressing the balance between accuracy and processing speed in chapter-level video recommendations. Specifically, it has been observed that enhancing recommendation accuracy reduces processing speed, while increasing processing speed decreases accuracy. To mitigate this trade-off, a hybrid approach is proposed, utilizing techniques such as TF-IDF, k-means++ clustering, and Graph Neural Networks (GNN). The approach involves pre-constructing clusters based on chapter similarity to reduce computational load during recommendations, thereby improving processing speed, and applying GNN to the graph of clusters as nodes to enhance recommendation accuracy. Experimental results indicate that the use of GNN resulted in an approximate 19.7% increase in recommendation accuracy, as measured by the Mean Reciprocal Rank (MRR) metric, and an approximate 27.7% increase in precision defined by similarities. These findings are expected to contribute to the development of a learning system that recommends more suitable video chapters in response to learners' queries.

Video Retrieval System supporting Adaptive Streaming Service (적응형 스트리밍 서비스를 지원하는 비디오 검색 시스템)

  • 이윤채;전형수;장옥배
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Recently, many researches into distributed processing on Internet, and multimedia data processing have been performed. Rapid and convenient multimedia services supplied with high quality and high speed are to be needed. In this paper, we design and implement clip-based video retrieval system on the Web enviroment in real-time. Our system consists of the content-based indexing system supporting convenient services for video content providers, and the Web-based retrieval system in order to make it easy and various information retrieval for users in the Web. Three important methods are used in the content-based indexing system, key frame extracting method by dividing video data, clip file creation method by clustering related information, and video database construction method by using clip unit. In Web-based retrieval system, retrieval method ny using a key word, two dimension browsing method of key frame, and real-time display method of the clip are used. In this paper, we design and implement the system that supports real-time display method of the clip are used. In this paper, we design and implement the system that supports real-time retrieval for video clips on Web environment and provides the multimedia service in stability. The proposed methods show a usefulness of video content providing, and provide an easy method for serching intented video content.

Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System (법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론)

  • Kim, Ji Hyun;Lee, Jong-Seo;Lee, Myungjin;Kim, Wooju;Hong, June Seok
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.137-152
    • /
    • 2012
  • In the generation of Web 2.0, as many users start to make lots of web contents called user created contents by themselves, the World Wide Web is overflowing by countless information. Therefore, it becomes the key to find out meaningful information among lots of resources. Nowadays, the information retrieval is the most important thing throughout the whole field and several types of search services are developed and widely used in various fields to retrieve information that user really wants. Especially, the legal information search is one of the indispensable services in order to provide people with their convenience through searching the law necessary to their present situation as a channel getting knowledge about it. The Office of Legislation in Korea provides the Korean Law Information portal service to search the law information such as legislation, administrative rule, and judicial precedent from 2009, so people can conveniently find information related to the law. However, this service has limitation because the recent technology for search engine basically returns documents depending on whether the query is included in it or not as a search result. Therefore, it is really difficult to retrieve information related the law for general users who are not familiar with legal terms in the search engine using simple matching of keywords in spite of those kinds of efforts of the Office of Legislation in Korea, because there is a huge divergence between everyday words and legal terms which are especially from Chinese words. Generally, people try to access the law information using everyday words, so they have a difficulty to get the result that they exactly want. In this paper, we propose a term mapping methodology between everyday words and legal terms for general users who don't have sufficient background about legal terms, and we develop a search service that can provide the search results of law information from everyday words. This will be able to search the law information accurately without the knowledge of legal terminology. In other words, our research goal is to make a law information search system that general users are able to retrieval the law information with everyday words. First, this paper takes advantage of tags of internet blogs using the concept for collective intelligence to find out the term mapping relationship between everyday words and legal terms. In order to achieve our goal, we collect tags related to an everyday word from web blog posts. Generally, people add a non-hierarchical keyword or term like a synonym, especially called tag, in order to describe, classify, and manage their posts when they make any post in the internet blog. Second, the collected tags are clustered through the cluster analysis method, K-means. Then, we find a mapping relationship between an everyday word and a legal term using our estimation measure to select the fittest one that can match with an everyday word. Selected legal terms are given the definite relationship, and the relations between everyday words and legal terms are described using SKOS that is an ontology to describe the knowledge related to thesauri, classification schemes, taxonomies, and subject-heading. Thus, based on proposed mapping and searching methodologies, our legal information search system finds out a legal term mapped with user query and retrieves law information using a matched legal term, if users try to retrieve law information using an everyday word. Therefore, from our research, users can get exact results even if they do not have the knowledge related to legal terms. As a result of our research, we expect that general users who don't have professional legal background can conveniently and efficiently retrieve the legal information using everyday words.