• 제목/요약/키워드: 질의처리 알고리즘

검색결과 417건 처리시간 0.02초

R-tree에서 Seeded 클러스터링을 이용한 다량 삽입 (Bulk Insertion Method for R-tree using Seeded Clustering)

  • 이태원;문봉기;이석호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권1호
    • /
    • pp.30-38
    • /
    • 2004
  • 지구 관측 시스템(EOSDIS)나 많은 수의 클라이언트를 추적하는 이동전화 서비스 등 많은 응용에서는 지속적으로 생겨나는 대량의 복잡한 데이타들을 보관하고 인덱싱하는 것이 매우 어려운 일이다. 다차원 데이타를 효과적으로 관리하기 위해 R-tree에 기반 한 인덱스 구조가 널리 사용되어 왔다. 본 논문에서는 빠른 데이타 생성 속도를 따라잡으면서 대량 삽입을 통해 R-tree를 관리할 수 있는 seeded clustering이라는 확장성 있는 기법을 제안한다. 이 기법에서는 삽입할 대상 R-tree의 상위 k레벨의 구조를 활용하여 시드 트리를 만들어 삽입 데이타를 분류해 클러스터를 생성한다. 그리고 각 클러스터로부터 삽입 R-tree를 생성하고 이를 대상 R-tree에 한 번에 하나씩 삽입한다. 논문에서는 자세한 알고리즘과 함에 다양한 실험 결과를 보여준다. 실험 결과를 통해 seeded clustering을 이용한 대량 삽입이 기존의 대량 삽입 기법들과 비교해 삽입이나 질의 처리 모두에서 우수함을 알 수 있다.

체류시간을 고려한 여행 일정 추천 시스템 (Personalized Itinerary Recommendation System based on Stay Time)

  • 박세화;박석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권1호
    • /
    • pp.38-43
    • /
    • 2016
  • 최근 교통 기술의 발전과 여가생활에 대한 관심이 늘어남에 따라 여행이 주요 여가 활동으로 자리 잡고 있다. 또한, 스마트폰이나 태블릿PC와 같이 GPS를 탑재한 모바일 기기 보급으로 인해 사용자의 위치를 실시간으로 수집하는 것이 가능해졌다. 이런 환경을 바탕으로 번거로운 여행 일정 계획을 대신 수립해주는 여행 일정 추천 시스템에 대한 연구가 활발하게 진행되었다. 그러나 기존의 연구들은 사용자들의 비용이나 시간에 대한 제약사항을 고려해 짧은 경로를 포함하는 여행 일정을 추천하거나 여행 목적지에서 가장 인기 있는 지역을 가장 많이 포함하는 일정을 추천하는 것을 목적으로 하기 때문에 개인의 만족도를 높이기 위한 개인화된 여행 일정 추천시스템에 대한 연구는 많지 않았다. 따라서 본 연구에서는 사용자들의 만족도를 높이기 위한 개인화 서비스 연구의 일환으로 그 동안 다른 연구에서는 간과되었던 사용자들의 체류시간을 고려한 여행 일정 추천 시스템을 제안한다.

한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현 (An Implementation of Automatic Genre Classification System for Korean Traditional Music)

  • 이강규;윤원중;박규식
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.

온톨로지 Open World 추론과 규칙 Closed World 추론의 통합 (Integration of Ontology Open-World and Rule Closed-World Reasoning)

  • 최정화;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권4호
    • /
    • pp.282-296
    • /
    • 2010
  • OWL 온톨로지는 실세계의 도메인 지식을 모델링 하는데 적합하다. 또한 명백하게 정의된 지식으로부터 암시적인 새로운 지식을 추론할 수 있다. 하지만 이 모델링된 지식은 완전할 수 없다. 사람이 가지고 있는 모든 상식을 모델링 할 수 없기 때문이다. 온톨로지는 완전한 지식표현을 위한 무결성 제약조건과 예외 처리와 같은 비단조 추론을 지원할 방법이 없다. 디폴트 규칙은 온톨로지 안의 특정 클래스에 대한 예외를 처리할 수 있다. 또한 무결성 제약은 온톨로지에 정의된 클래스의 제한조건(restriction)에 인스턴스가 일관되게 할 수 있다. 본 논문에서는 Open World Assumption(OWA) 기반의 온톨로지와 Closed World Assumption(CWA) 기반의 비단조 추론을 지원하는 규칙의 지식베이스를 통합하여 Open World 와 Closed World 추론을 모두 지원하는 실질적인 추론 시스템을 제안한다. 이 시스템은 온톨로지에 정의된 불완전한 개념을 다룰 때 OWA기반이라서 발생하는 문제점을 ASP(Answer Set Programming)를 사용하여 해결방안을 제안한다. ASP는 논리 프로그래밍 언어로써 비단조 추론을 허용하며, 서술 논리 지식베이스에 CWA 기반의 질의를 가능하게 한다. 제안하는 시스템은 Protege에서 제공하는 Pizza 온톨로지를 예로써 비단조 추론이 필요한 경우를 보이고, 잘 알려진 온톨로지들로 성능 평가하여 본 시스템의 정당(sound)하고 완전(complete)함을 증명한다.

이동 객체의 유사 부분궤적 검색을 위한 시그니쳐-기반 색인 기법 (Signature-based Indexing Scheme for Similar Sub-Trajectory Retrieval of Moving Objects)

  • 심춘보;장재우
    • 정보처리학회논문지D
    • /
    • 제11D권2호
    • /
    • pp.247-258
    • /
    • 2004
  • 최근 비디오 데이타베이스, 시공간 데이타베이스, 모바일 데이타베이스와 같은 데이타베이스 응용 분야에서 이동 객체를 기반으로 하는 검색 기법에 관한 연구가 활발히 이루어지고 있다. 본 논문에서는 이동 객체의 궤적에 대한 효율적인 유사 부분궤적 검색을 지원하는 새로운 시그니쳐-기반 색인 기법을 제안한다. 제안하는 시그니쳐-기반 색인 기법은 궤적 데이타를 토대로 궤적 시그니쳐를 생성하는 방법에 따라 중첩 시그니쳐-기반 색인 기법(Superimposed signature-based Indexing scheme for similar Sub-trajectory Retrieval : SISR)과 합성 시그니쳐-기반색인 기법(Concatenated signature-based Indexing scheme for similar Sub-trajectory Retrieval : CISR)으로 나뉜다. 생성된 궤적 시그니쳐 정보는 시그니쳐 파일에 저장되고, 검색시 주어진 사용자 질의 궤적 정보를 기반으로 데이타 파일을 직접 접근하기 전에 전체 궤적 시그니쳐들을 탐색하여 필터링을 수행한다. 이를 통해 데이타 파일의 검색 범위를 현저히 줄임으로써 검색 성능을 향상시킨다. 또한 검색된 궤적 데이터와의 유사성을 측정하기 위해 k-워핑 알고리즘을 적용시켜 검색의 효율성을 높인다. 마지막으로, 순차 색인 기법, SISR기법, 그리고 CISR 기법을 삽입시간, 검색 시간 그리고 부가 저장 공간측면에서 성능 평가를 수행한다. 성능 평가 결과, 제안하는 두 가지 기법이 검색 성능 측면에서 순차 색인 기법에 비해 성능이 우수함을 나타내고, 아울러 SISR 기법이 CISR 기법에 비해 보다 우수한 성능을 보인다.

단일머신 환경에서의 논리적 프로그래밍 방식 기반 대용량 RDFS 추론 기법 (Scalable RDFS Reasoning using Logic Programming Approach in a Single Machine)

  • 바트셀렘 작바랄;김제민;이완곤;박영택
    • 정보과학회 논문지
    • /
    • 제41권10호
    • /
    • pp.762-773
    • /
    • 2014
  • 시맨틱 웹상에서 RDFS로 표현된 데이터의 사용 증가로 인하여, 대용량 데이터의 추론에 대한 많은 요구가 생겨나고 있다. 많은 연구자들은 대용량 온톨로지 추론을 수행하기 위해서 하둡과 같은 고가의 분산 프레임워크를 활용한다. 그러나, 적절한 사이즈의 RDFS 트리플 추론을 위해서는 굳이 고가의 분산 환경 시스템을 사용하지 않고 단일 머신에서도 논리적 프로그래밍을 이용하면 분산 환경과 유사한 추론 성능을 얻을 수 있다. 본 논문에서는 단일 머신에 논리적 프로그래밍 방식을 적용한 대용량 RDFS 추론 기법을 제안하였고 다중 머신을 기반으로 한 분산 환경 시스템과 비교하여 2억개 정도의 트리플에 대한 RDFS 추론 시스템을 적용한 경우 분산환경과 비슷한 성능을 보이는 것을 실험적으로 증명하였다. 효율적인 추론을 위해 온톨로지 모델을 세부적으로 분리한 메타데이터 구조와 대용량 트리플의 색인 방안을 제안하고 이를 위해서 전체 트리플을 하나의 모델로 로딩하는 것이 아니라 각각 온톨로지 추론 규칙에 따라 적절한 트리플 집합을 선택하였다. 또한 논리 프로그래밍이 제공하는 Unification 알고리즘 기반의 트리플 매칭, 검색, Conjunctive 질의어 처리 기반을 활용하는 온톨로지 추론 방식을 제안한다. 제안된 기법이 적용된 추론 엔진을 LUBM1500(트리플 수 2억개) 에 대해서 실험한 결과 166K/sec의 추론 성능을 얻었는데 이는 8개의 노드(8 코아/노드)환경에서 맵-리듀스로 수행한 WebPIE의 185K/sec의 추론 속도와 유사함을 실험적으로 증명하였다. 따라서 단일 머신에서 수행되는 본 연구 결과는 트리플의 수가 2억개 정도까지는 분산환경시스템을 활용하지 않고도 분산환경 시스템과 비교해서 비슷한 성능을 보이는 것을 확인할 수 있었다.

유리화 비정형 탄소(vitreous carbon)를 이용하여 제작한 전계방출 소자의 균일성 증진방법

  • 안상혁;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.53-53
    • /
    • 1999
  • 전계방출을 이용한 평판 표시장치는 CRT가 가진 장점을 모두 갖는 동시에 얇고 가벼우며 낮은 전력소모로 완벽한 색을 구현할 수 있는 차세대 표시장치로서 이에 대한 여국가 활발히 이루어지고 있다. 여기에 사용되는 음극물질로서 실리콘이나 몰리 등을 팁모양으로 제작하여 사용해 왔다. 하지만 잔류가스에 의한 역스퍼터링이나 화학적 반응에 의해서 전계방출 성능이 점차 저하되는 등의 해결해야할 많은 문제가 있다. 이러한 문제들을 해결하기 위하여 탄소계 재료로서 다이아몬드, 다이아몬드상 카본 등을 이용하려는 노력이 진행되어 왔다. 이중 유리화 비정형 탄소는 다량의 결함을 가지고 있는 유리질의 고상 탄소 재로로서, 전기전도도가 우수하면서 outgassing이 적고 기계적 강도가 뛰어나며 고온에서도 화학적으로 안정하여 전계방출 소자의 음극재료로서 알맞은 것으로 생각된다. 유리화 비정형 탄소가루를 전기영동법으로 기판에 코팅하여 전계방출 소자를 제작하였다. 전기영동 용액으로 이소프로필알코올에 질산마그네슘과 소량의 증류수, 유리화 비정형 탄소분말을 섞어주었고 기판으로는 몰리(Mo)가 증착된 유리를 사용하였다. 균일한 증착을 위해서 증착후 역전압을 걸어 주는 방법과 증착 후 플라즈마 처리를 하는 등의 여러 가지 방법을 사용했다. 전계방출 전류는 1$\times$10-7Torr이사에서 측정하였다. 1회 제작된 용액으로 반복해서 증착한 횟수에 따라 표면의 거치기, 입자의 분포, 전계방출 측정 결과 등의 차이가 관찰되었다. 발광이미지는 전압에 따라 변화하였고, 균일한 발광을 관찰하기 위해서 오랜 시간동안 aging 과정을 거쳐야 했다. 그리고 구 모양의 양극을 사용해서 위치를 변화시키며 시동 전기장을 관찰하여 위치에 따른 전계방출의 차이를 조사하여 발광의 균일성을 알 수 있었다.on microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.도상승율을 갖는 경우가 다른 베이킹 시나리오 모델에 비해 효과적이라 생각되며 초대 필요 공급열량은 200kW 정도로 산출되었다. 실질적인 수치를 얻기 위해 보다 고차원 모델로의 해석이 필요하리라 생각된다. 끝으로 장기적인 관점에서 KSTAR 장치의 베이킹 계획도 살펴본다.습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.pective" to workflow architectural discussions. The vocabulary suggested

  • PDF