• Title/Summary/Keyword: 질의응답시스템

Search Result 438, Processing Time 0.026 seconds

R2FID: Joint Reranker in Fusion-In-Decoder for Open Domain Question Answering over Tables (R2FID: Joint Reranker기반 Fusion-In-Decoder를 이용한 오픈 도메인 테이블 질의 응답)

  • Sung-Min Lee;Eunhwan Park;Seung-Hoon Na;Daeryong Seo;Donghyeon Jeon;Inho Kang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.100-104
    • /
    • 2022
  • 오픈 도메인 질의 응답(Open Domain Question Answering)은 주어진 질문에 대한 단서가 주어지지 않은 환경에서 정답을 도출해 내는 어려운 문제이다. 최근 테이블 데이터와 같은 구조화된 데이터에서의 질의응답 시스템에 대한 중요도가 점차 높아지면서, 본 논문에서는 위키피디아에 등장하는 테이블들을 대상으로 한국어 테이블 오픈 도메인 질의 응답 시스템을 구성하기로 한다. 또한, 테이블 검색의 한계를 보완하기 위해 Joint Reranker 기반 Fusion-In-Decoder를 제안하고 적용하여 질의응답 Task에서 베이스라인에 대비하여 EM 3.36, F1-Score 3.25 향상을 이루어냈다.

  • PDF

Development of Community Question Answering System suitable for Internet of Things Environment (사물 인터넷 환경에 적합한 커뮤니티 질의 응답 시스템 개발)

  • Kim, Gang-Sup;Lee, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.1005-1007
    • /
    • 2015
  • 사물 인터넷(Internet of Things)의 확산으로 가까운 미래에는 사물 인터넷 환경에서 질의 응답 시스템이 활발하게 이용될 것으로 예상된다. 본 논문에서는 사물 인터넷 환경에 적합한 초소형, 저사양 하드웨어를 이용하여 커뮤니티 질의 응답 시스템(Community Question Answering System)을 구축하는 방안에 대해 살펴본다. 하드웨어는 700Mhz 싱글 코어 CPU와 512MB의 메인 메모리를 장착한 라즈베리 파이를 이용하였고, 질의 응답 시스템으로는 Apache Solr를 기본 시스템으로 활용하였다. 성능 분석 결과 실시간 응답성은 매우 훌륭하지만 정확도는 앞으로 보완이 필요한 것으로 분석되었다.

Korean Open Domain Question Answering System Using KorQuAD (KorQuAD를 활용한 한국어 오픈도메인 질의응답 시스템)

  • Cho, Sanghyun;Kim, Minho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.321-325
    • /
    • 2019
  • 오픈 도메인 질의응답이란, 질문을 줬을 때 그 질문과 연관성이 높은 문서를 검색하고 검색된 문서에서 정답을 추출하는 태스크이다. 본 논문은 기계 독해 데이터인 KorQuAD를 활용한 오픈도메인 질의응답 시스템을 제안한다. 문서 검색기를 이용하여 질문과 관련 있는 위키피디아 문서들을 검색하고 검색된 문서에 단락 선택 모델을 통해서 문서 질문과 연관성이 높은 단락들을 선별하여 기계 독해 모델에서 처리해야 할 입력의 수를 줄였다. 문서 선별모델에서 선별된 여러 단락에서 추출된 정답 후보에서 여러 가지 정답 모형을 적용하여 성능을 비교하는 실험을 하였다. 본 논문에서 제안한 오픈도메인 질의응답 시스템을 KorQuAD에 적용했을 때, 개발 데이터에서 EM 40.42%, F1 55.34%의 성능을 보였다.

  • PDF

Semantic Fuzzy Implication Operator for Semantic Implication Relationship of Knowledge Descriptions in Question Answering System (질의 응답 시스템에서 지식 설명의 의미적 포함 관계를 고려한 의미적 퍼지 함의 연산자)

  • Ahn, Chan-Min;Lee, Ju-Hong;Choi, Bum-Ghi;Park, Sun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.73-83
    • /
    • 2011
  • The question answering system shows the answers that are input by other users for user's question. In spite of many researches to try to enhance the satisfaction level of answers for user question, there is a essential limitation. So, the question answering system provides users with the method of recommendation of another questions that can satisfy user's intention with high probability as an auxiliary function. The method using the fuzzy relational product operator was proposed for recommending the questions that can includes largely the contents of the user's question. The fuzzy relational product operator is composed of the Kleene-Dienes operator to measure the implication degree by contents between two questions. However, Kleene-Dienes operator is not fit to be the right operator for finding a question answers pair that semantically includes a user question, because it was not designed for the purpose of finding the degree of semantic inclusion between two documents. We present a novel fuzzy implication operator that is designed for the purpose of finding question answer pairs by considering implication relation. The new operator calculates a degree that the question semantically implies the other question. We show the experimental results that the probability that users are satisfied with the searched results is increased when the proposed operator is used for recommending of question answering system.

Semantic Query Expansion based on a Question Category Concept List in QA system (질의 응답 시스템에서 질의 카테고리별 개념리스트 구축에 기반한 의미적 질의 확장)

  • 김혜정;강보영;박성배;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.178-180
    • /
    • 2004
  • 질의 응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer tyype) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서의 정답문장에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서, 본 논문은 질의별 카테고리 개념 리스트를 구축하여 효과적인 의미적 질의 확장 방법론을 제안한다. 제안된 방법은 먼저 질문 문장의 패턴 린 질의 정보 유형을 파악하여 질의 카테고리 및 카테고리별 개념 리스트를 구축한다. 그런 후 구축된 질의 개념 카테고리 및 리스트를 활용하여 질의 유형을 학습하고, 새로운 질의가 입력되면 해당 개념 카테고리로 분류한 후, 개념 리스트를 기반으로 개념별 질의 확장을 수행한다. 제안된 시스템의 성능 명가를 위하여, TREC-9의 질의와 TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건을 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

  • PDF

A Study on Word Semantic Categories for Natural Language Question Type Classification and Answer Extraction (자연어 질의 유형판별과 응답 추출을 위한 어휘 의미체계에 관한 연구)

  • Yoon Sung-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.141-144
    • /
    • 2004
  • 질의응답 시스템이 정보검색 시스템과 다른 중요한 점은 질의 처리 과정이며, 자연어 질의 문장에서 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 것이다. 본 논문에서는 질의 주-형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의 문장에서 의문사에 해당하는 어휘들을 추출하고 주변에 나타나는 명사들의 의미 정보를 이용하여 세부적인 정답 유형을 결정할 수 있는 질의 유형 분류 방법을 제안한다. 의문사가 생략된 경우의 처리 방법과 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법을 제안한다.

  • PDF

Experimental Analysis of Correct Answer Characteristics in Question Answering Systems (질의응답시스템에서 정답 특징에 관한 실험적 분석)

  • Han, Kyoung-Soo
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.927-933
    • /
    • 2018
  • One of the factors that have the greatest influence on the error of the question answering system that finds and provides answers to natural language questions is the step of searching for documents or passages that contain correct answers. In order to improve the retrieval performance, it is necessary to understand the characteristics of documents and passages containing correct answers. This paper experimentally analyzes how many question words appear in the correct answer documents, how the location of the question word is distributed, and how the topic of the question and the correct answer document are similar using the corpus composed of the question, the documents with correct answer, and the documents without correct answer. This study explains the causes of previous search research results for question answer system and discusses the necessary elements of effective search step.

An E-Mail Question Answering System using Question Generation Model (질의생성 모델을 이용한 전자우편 질의응답 시스템)

  • Zhang, Jeong-Sun;Kim, Sang-Bum;Seo, Hee-Chul;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.176-183
    • /
    • 2002
  • 전자우편과 같이 일정한 질의 형식을 가지고 있는 긴 자연어 질의에 대해서 사용자 질의 단어에 가중치를 부과하는 방법과 질의에 대한 정답을 기존의 질의응답 집합에서 유사한 질의를 검색하여 그 정답을 사용자에게 제공하는 전자우편 질의응답 시스템을 제안한다. 사용자의 긴 자연어 질의가 주어지면 질의의 범주와 문장의 중요도 정보를 이용하여 질의에서 사용된 단어가 주제어로 쓰였을 확률을 계산하고, 계산된 확률에 기반하여 중요도를 할당하는 질의생성 모델을 제안한다. 또한 사용자 질의와 기존에 문의되어진 전자우편 질의의 유사도를 단어의 빈도를 고려한 어휘유사도, 한글 시소러스(Thesaurus)를 이용한 의미유사도와 본 논문에서 제안한 질의생성 모델을 이용한 주제 유사도를 이용하여 계산한다. 실험을 위하여 실세계에서 사용 중인 질의응답 집합을 이용하여 실험을 하였으며 각 유사도 계산 방법의 기여도를 비교 평가하고 제안한 질의생성모델이 성능향상에 미치는 영향을 평가하였다.

  • PDF

A Study on the Natural Language Query System Using Sentence-Pattern (문장패턴을 이용한 자연어 질의 시스템에 대한 연구)

  • Woo, Keun-Sin;Song, Jae-Gwan;Hong, Sung-Woong;Yon, Che-Yong;Park, Chan-Gun
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.214-218
    • /
    • 2003
  • 질의응답 시스템은 인터넷과 같은 실용적 환경에서 사용될 경우, 실제 사용자의 질의는 다양한 유형으로 나타나게 된다. 따라서 실용적인 시스템에서 사용되는 질의는 문장의 형태나 단어의 쓰임에 관계없이 같은 의도를 가진 질의를 같은 유형으로 분류할 수 있는 의문형 문장패턴을 태깅하여 다양한 형태의 자연어로 기술된 문서에서 원하는 응답으로 처리할 수 있는 질의 응답 시스템은 정보 검색 시스템으로서의 가능성을 보여준다.

  • PDF

Query Reconstruction for Searching QA Documents by Utilizing Structural Components (질의응답문서 검색에서 문서구조를 이용한 질의재생성에 관한 연구)

  • Choi, Sang-Hee;Seo, Eun-Gyoung
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.2
    • /
    • pp.229-243
    • /
    • 2006
  • This study aims to suggest an effective way to enhance question-answer(QA) document retrieval performance by reconstructing queries based on the structural features in the QA documents. QA documents are a structured document which consists of three components : question from a questioner, short description on the question, answers chosen by the questioner. The study proposes the methods to reconstruct a new query using by two major structural parts, question and answer, and examines which component of a QA document could contribute to improve query performance. The major finding in this study is that to use answer document set is the most effective for reconstructing a new query. That is, queries reconstructed based on terms appeared on the answer document set provide the most relevant search results with reducing redundancy of retrieved documents.