• Title/Summary/Keyword: 질의언어

Search Result 616, Processing Time 0.024 seconds

효율적인 XML 질의 처리를 위한 XQuery 질의의 정규화 (Normalization of XQuery Queries fur Efficient XML Query Processing)

  • 김서영;이기훈;황규영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.136-138
    • /
    • 2004
  • XML 이 웹 상에서의 정보 표현, 통합, 교환을 위한 표준이 됨에 따라 다양한 XML 질의 언어들이 제안되었으며, World Wide Web Consortium(W3C)은 XQery를 XML 질의 언어의 표준으로 권고하였다. XQuery는 SQL과 유사하게 중첩 질의를 허용하므로, 중첩된 XQuery 질의를 동일한 의미를 가지면서 보다 효율적으로 실행될 수 있는 질의로 변환하는 정규화 규칙들이 제안되었다. 그러나 제안된 정규화 규칙들은 제한적인 형태의 중첩 질의에만 적용되는 문제점을 가지고 있다 특히, FLWR 표현식의 where 절에 있는 중첩을 처리할 수 없다. 본 논문에서는 SQL 질의의 정규화 규칙들을 확장하여 FLWR 표현식의 모든 절에 나타나는 중첩을 처리할 수 있는 XQuery 질의의 정규화 규칙들을 제안한다 이를 위해 먼저, 상관과 집계의 유무에 따라 XQuery 질의의 중첩 유형을 분류하고, 각 유형 별로 정규화 규칙들을 제안한다 다음으로, 중첩된 XQuery 질의에 정규화 규칙들을 적용하는 세부 알고리즘을 제안한다.

  • PDF

오픈도메인 질의문 자동 분류를 위한 주석 말뭉치 구축 연구 (A study on the Construction of Annotated corpora for the Automatic Classification of Open Domain Queries)

  • 안애림;이서진;최동현;김응균;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.309-314
    • /
    • 2019
  • 본 연구는 오픈도메인 자연어 질의문 유형을 '질문 초점(Question Focus)'에 따라 분류하고, 기계학습 기반 질의문 유형 분류기의 성능 향상을 위한 주석 말뭉치 구축을 목표로 한다. 오픈도메인 질의문 분석을 통해 의문사 등의 키워드 기반 질의문 유형 분류의 한계를 설명하고, 질의문 내의 비명시적인 의미자질을 고려한 질문 초점 기반 질의문 유형 분류 기준을 정의하였다. 이 기준에 따라 구축된 112,856 문장의 주석 말뭉치를 기계학습(CNN) 기반 문장 분류 시스템의 학습 데이터로 사용하여 실험한 결과 F1-Score 97.72%성능을 보였다. 또한 이를 카카오 오픈도메인 질의응답시스템에 적용하여 질의문 확장을 위한 의미 자질로 사용하였고 그 결과 전체 시스템 성능을 1.6%p 향상시켰다.

  • PDF

Large Pre-trained Language Model의 P-tuning을 이용한 질의 정규화 (Query Normalization Using P-tuning of Large Pre-trained Language Model)

  • 서수빈;인수교;박진성;남경민;김현욱;문기윤;황원요;김경덕;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.396-401
    • /
    • 2021
  • 초거대 언어모델를 활용한 퓨샷(few shot) 학습법은 여러 자연어 처리 문제에서 좋은 성능을 보였다. 하지만 데이터를 활용한 추가 학습으로 문제를 추론하는 것이 아니라, 이산적인 공간에서 퓨샷 구성을 통해 문제를 정의하는 방식은 성능 향상에 한계가 존재한다. 이를 해결하기 위해 초거대 언어모델의 모수 전체가 아닌 일부를 추가 학습하거나 다른 신경망을 덧붙여 연속적인 공간에서 추론하는 P-tuning과 같은 데이터 기반 추가 학습 방법들이 등장하였다. 본 논문에서는 문맥에 따른 질의 정규화 문제를 대화형 음성 검색 서비스에 맞게 직접 정의하였고, 초거대 언어모델을 P-tuning으로 추가 학습한 경우 퓨샷 학습법 대비 정확도가 상승함을 보였다.

  • PDF

검색 증강 LLM을 통한 한국어 질의응답 (Korean QA with Retrieval Augmented LLM)

  • 서민택;나승훈;임준호;김태형;류휘정;장두성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.690-693
    • /
    • 2023
  • 언어 모델의 파라미터 수의 지속적인 증가로 100B 단위의 거대 언어모델 LLM(Large Language Model)을 구성 할 정도로 언어 모델의 크기는 증가 해 왔다. 이런 모델의 크기와 함께 성장한 다양한 Task의 작업 성능의 향상과 함께, 발전에는 환각(Hallucination) 및 윤리적 문제도 함께 떠오르고 있다. 이러한 문제 중 특히 환각 문제는 모델이 존재하지도 않는 정보를 실제 정보마냥 생성한다. 이러한 잘못된 정보 생성은 훌륭한 성능의 LLM에 신뢰성 문제를 야기한다. 환각 문제는 정보 검색을 통하여 입력 혹은 내부 표상을 증강하면 증상이 완화 되고 추가적으로 성능이 향상된다. 본 논문에서는 한국어 질의 응답에서 검색 증강을 통하여 모델의 개선점을 확인한다.

  • PDF

비즈니스 프로세스 질의 언어의 도입 가이드라인 (A Guideline for incorporating business process query language)

  • 김민수;김훈태
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.243-250
    • /
    • 2006
  • BPM 시스템의 활용이 확대되고 BPM 표준의 채택이 일반화되어가면서, 차츰 BPM 시스템의 관리와 유지보수 및 활용을 극대화할 수 있는 방안에 대한 요구가 높아지고 있다. 여기에는 비즈니스 프로세스 질의 언어의 표준화가 중요한 역할을 할 것으로 기대되고 있다. 비즈니스 프로세스 질의 언어는 마치 데이터베이스 관리 시스템의 SQL처럼 BPM 시스템에 대한 표준적인 접근 및 개발이 가능하게 해주며, 궁극적으로는 BPM 어플리케이션의 개발 생산성과 유지보수성을 향상시켜 줄 수 있을 것이다. 본 논문에서는 아직까지 표준화에 대한 명시적인 결과물이 제시되지 않고 있는 비즈니스 프로세스 질의 언어에 대한 기존의 연구 결과를 살펴보고, 어떠한 설계 요소들이 포함되어야 할지를 제시하고, 이를 BPM 시스템에 도입하기 위해 필요한 참조 아키텍처를 제안하고자 한다.

  • PDF

KT Test Set을 이용한 우리말 자연언어검색의 효율성에 관한 비교연구 (A Comparative Study on the Effectiveness of Hangul Natural Language Retrieval Using KT Test Set)

  • 이현아;김성혁
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1995년도 제2회 학술대회 논문집
    • /
    • pp.37-40
    • /
    • 1995
  • 본 연구는 자연언어시스템에서 색인어와 탐색어의 특정성에 기인하는 재현율 감소를 극복하기 위한 방법론으로써 탐색어의 확장을 통한 검색효율을 평가하였다. 이를 위하여 우리말 데이터베이스를 대상으로 주제전문가가 자연언어로 작성한 원 질의문 (Q1), 원 질의문에 사용된 탐색어와 데이터베이스내의 색인어간의 유사도를 이용하여 탐색어를 확장한 질의문 (Q2(0.2), Q2(0.3)), 주제전문가인 이용자가 Q1의 의미적인 관계를 고려해서 자연언어로 탐색어를 확장한 질의문 (Q3)을 검색효율면에서 비교하였다. 실험결과, 평균재현율은 Q2(0.2), Q2(0.3), Q3, Q1의 검색의 순이었다. 평균정확율은 Q3, Q2(0.3), Q1, Q2(0.2)검색의 순으로 나타났다.

  • PDF

어휘관계 정보와 질의개념연관도를 반영한 정보검색 성능 향상 기법 (Information Retrieval Based on Word Relationships and Degree of Query Concept)

  • 김준길;이경순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.451-454
    • /
    • 2010
  • 정보검색 분야에서 어휘 불일치 문제를 해결하기 위해 질의에서의 어휘 사이의 관계를 반영하는 것은 필수적인 요구사항이 되었다. 본 논문에서는 문장-문장 번역쌍을 이용하여 어휘 번역확률을 계산하였고, 어휘관계 정보를 반영하는 번역기반 언어모델에 어휘와 질의 개념과의 연관 정도를 반영한 모델을 제안한다. 뉴스 컬렉션 집합인 TREC AP 컬렉션에 대한 비교실험을 하였다. 실험결과에서 언어모델보다 어휘 관계를 반영한 번역기반 언어모델의 성능이 향상되었고 어휘의 질의개념 연관도를 반영한 모델이 번역기반 언어모델보다 성능이 향상됨을 보였다.

표 질의응답을 위한 언어 모델 학습 및 데이터 구축 (Pre-trained Language Model for Table Question and Answering)

  • 심묘섭;전창욱;최주영;김현;장한솔;민경구
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.335-339
    • /
    • 2021
  • 기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.

  • PDF

질의응답 시스템을 위한 백과사전 기반 지식베이스와 온톨로지 (Encyclopedia-Based Knowledge Base and Ontology for Question Answering System)

  • 최호섭;옥철영;김창환;왕지현;장명길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.177-183
    • /
    • 2003
  • 기존의 정보검색시스템이 사용자의 질의에 의해 키워드가 포함된 의미 있는 문서를 제공하는 시스템이라면, 질의응답시스템은 사용자 질의에 맞는 정답을 적절한 언어처리 기법을 통해 텍스트로부터 추출하여 제공하는 시스템이다. 이러한 언어처리 기법을 이용한 질의응답 시스템에서 시스템의 성능 향상에 도움을 줄 수 있는 것이, 실세계의 지식을 저장하고 있는 지식베이스라 할 수 있다. 지식베이스가 가지고 있는 실세계의 지식을 어떻게 효율적으로 활용하느냐에 따라 질의 처리 분석과 정답 확률을 향상시킬 수 있는 것이다. 본 논문에서는 실세계의 지식을 어느 정도 체계적 의미적으로 반영하고 있는 것을 백과사전으로 판단하여, 백과사전의 '인물' 범주(category)를 중심으로 백과사전 지식베이스의 틀을 마련하고자 하였다. 또한 어휘의 계층적 구조를 중심으로 한 온톨로지를 백과사전 지식베이스와 유기적으로 연결시킴으로써 보다 의미 있는 지식베이스를 형성하는 방안을 모색하고자 하였다.

  • PDF

R3 : 테이블의 구조 정보를 활용한 오픈 도메인 질의응답 시스템 (R3 : Open Domain Question Answering System Using Structure Information of Tables)

  • 강덕형;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.455-460
    • /
    • 2022
  • 오픈 도메인 질의 응답에서 질의에 대한 답변은 질의에 대한 관련 문서를 검색한 다음 질의에 대한 답변을 포함할 수 있는 검색된 문서를 분석함으로써 얻어진다. 문서내의 테이블이 질의와 관련이 있을 수 있음에도 불구하고, 기존의 연구는 주로 문서의 텍스트 부분만을 검색하는 데 초점을 맞추고 있었다. 이에 테이블과 텍스트를 모두 고려하는 질의응답과 관련된 연구가 진행되었으나 테이블의 구조적 정보가 손실되는 등의 한계가 있었다. 본 연구에서는 테이블의 구조적 정보를 모델의 추가적인 임베딩을 통해 활용한 오픈 도메인 질의응답 시스템인 R3를 제안한다. R3는 오픈 도메인 질의 응답 데이터셋인 NQ에 기반한 새로운 데이터셋인 NQ-Open-Multi를 이용해 학습 및 평가하였으며, 테이블의 구조적 정보를 활용하지 않은 시스템에 비해 더 좋은 성능을 보임을 확인할 수 있었다.

  • PDF