XML 이 웹 상에서의 정보 표현, 통합, 교환을 위한 표준이 됨에 따라 다양한 XML 질의 언어들이 제안되었으며, World Wide Web Consortium(W3C)은 XQery를 XML 질의 언어의 표준으로 권고하였다. XQuery는 SQL과 유사하게 중첩 질의를 허용하므로, 중첩된 XQuery 질의를 동일한 의미를 가지면서 보다 효율적으로 실행될 수 있는 질의로 변환하는 정규화 규칙들이 제안되었다. 그러나 제안된 정규화 규칙들은 제한적인 형태의 중첩 질의에만 적용되는 문제점을 가지고 있다 특히, FLWR 표현식의 where 절에 있는 중첩을 처리할 수 없다. 본 논문에서는 SQL 질의의 정규화 규칙들을 확장하여 FLWR 표현식의 모든 절에 나타나는 중첩을 처리할 수 있는 XQuery 질의의 정규화 규칙들을 제안한다 이를 위해 먼저, 상관과 집계의 유무에 따라 XQuery 질의의 중첩 유형을 분류하고, 각 유형 별로 정규화 규칙들을 제안한다 다음으로, 중첩된 XQuery 질의에 정규화 규칙들을 적용하는 세부 알고리즘을 제안한다.
본 연구는 오픈도메인 자연어 질의문 유형을 '질문 초점(Question Focus)'에 따라 분류하고, 기계학습 기반 질의문 유형 분류기의 성능 향상을 위한 주석 말뭉치 구축을 목표로 한다. 오픈도메인 질의문 분석을 통해 의문사 등의 키워드 기반 질의문 유형 분류의 한계를 설명하고, 질의문 내의 비명시적인 의미자질을 고려한 질문 초점 기반 질의문 유형 분류 기준을 정의하였다. 이 기준에 따라 구축된 112,856 문장의 주석 말뭉치를 기계학습(CNN) 기반 문장 분류 시스템의 학습 데이터로 사용하여 실험한 결과 F1-Score 97.72%성능을 보였다. 또한 이를 카카오 오픈도메인 질의응답시스템에 적용하여 질의문 확장을 위한 의미 자질로 사용하였고 그 결과 전체 시스템 성능을 1.6%p 향상시켰다.
초거대 언어모델를 활용한 퓨샷(few shot) 학습법은 여러 자연어 처리 문제에서 좋은 성능을 보였다. 하지만 데이터를 활용한 추가 학습으로 문제를 추론하는 것이 아니라, 이산적인 공간에서 퓨샷 구성을 통해 문제를 정의하는 방식은 성능 향상에 한계가 존재한다. 이를 해결하기 위해 초거대 언어모델의 모수 전체가 아닌 일부를 추가 학습하거나 다른 신경망을 덧붙여 연속적인 공간에서 추론하는 P-tuning과 같은 데이터 기반 추가 학습 방법들이 등장하였다. 본 논문에서는 문맥에 따른 질의 정규화 문제를 대화형 음성 검색 서비스에 맞게 직접 정의하였고, 초거대 언어모델을 P-tuning으로 추가 학습한 경우 퓨샷 학습법 대비 정확도가 상승함을 보였다.
언어 모델의 파라미터 수의 지속적인 증가로 100B 단위의 거대 언어모델 LLM(Large Language Model)을 구성 할 정도로 언어 모델의 크기는 증가 해 왔다. 이런 모델의 크기와 함께 성장한 다양한 Task의 작업 성능의 향상과 함께, 발전에는 환각(Hallucination) 및 윤리적 문제도 함께 떠오르고 있다. 이러한 문제 중 특히 환각 문제는 모델이 존재하지도 않는 정보를 실제 정보마냥 생성한다. 이러한 잘못된 정보 생성은 훌륭한 성능의 LLM에 신뢰성 문제를 야기한다. 환각 문제는 정보 검색을 통하여 입력 혹은 내부 표상을 증강하면 증상이 완화 되고 추가적으로 성능이 향상된다. 본 논문에서는 한국어 질의 응답에서 검색 증강을 통하여 모델의 개선점을 확인한다.
BPM 시스템의 활용이 확대되고 BPM 표준의 채택이 일반화되어가면서, 차츰 BPM 시스템의 관리와 유지보수 및 활용을 극대화할 수 있는 방안에 대한 요구가 높아지고 있다. 여기에는 비즈니스 프로세스 질의 언어의 표준화가 중요한 역할을 할 것으로 기대되고 있다. 비즈니스 프로세스 질의 언어는 마치 데이터베이스 관리 시스템의 SQL처럼 BPM 시스템에 대한 표준적인 접근 및 개발이 가능하게 해주며, 궁극적으로는 BPM 어플리케이션의 개발 생산성과 유지보수성을 향상시켜 줄 수 있을 것이다. 본 논문에서는 아직까지 표준화에 대한 명시적인 결과물이 제시되지 않고 있는 비즈니스 프로세스 질의 언어에 대한 기존의 연구 결과를 살펴보고, 어떠한 설계 요소들이 포함되어야 할지를 제시하고, 이를 BPM 시스템에 도입하기 위해 필요한 참조 아키텍처를 제안하고자 한다.
본 연구는 자연언어시스템에서 색인어와 탐색어의 특정성에 기인하는 재현율 감소를 극복하기 위한 방법론으로써 탐색어의 확장을 통한 검색효율을 평가하였다. 이를 위하여 우리말 데이터베이스를 대상으로 주제전문가가 자연언어로 작성한 원 질의문 (Q1), 원 질의문에 사용된 탐색어와 데이터베이스내의 색인어간의 유사도를 이용하여 탐색어를 확장한 질의문 (Q2(0.2), Q2(0.3)), 주제전문가인 이용자가 Q1의 의미적인 관계를 고려해서 자연언어로 탐색어를 확장한 질의문 (Q3)을 검색효율면에서 비교하였다. 실험결과, 평균재현율은 Q2(0.2), Q2(0.3), Q3, Q1의 검색의 순이었다. 평균정확율은 Q3, Q2(0.3), Q1, Q2(0.2)검색의 순으로 나타났다.
정보검색 분야에서 어휘 불일치 문제를 해결하기 위해 질의에서의 어휘 사이의 관계를 반영하는 것은 필수적인 요구사항이 되었다. 본 논문에서는 문장-문장 번역쌍을 이용하여 어휘 번역확률을 계산하였고, 어휘관계 정보를 반영하는 번역기반 언어모델에 어휘와 질의 개념과의 연관 정도를 반영한 모델을 제안한다. 뉴스 컬렉션 집합인 TREC AP 컬렉션에 대한 비교실험을 하였다. 실험결과에서 언어모델보다 어휘 관계를 반영한 번역기반 언어모델의 성능이 향상되었고 어휘의 질의개념 연관도를 반영한 모델이 번역기반 언어모델보다 성능이 향상됨을 보였다.
기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.
기존의 정보검색시스템이 사용자의 질의에 의해 키워드가 포함된 의미 있는 문서를 제공하는 시스템이라면, 질의응답시스템은 사용자 질의에 맞는 정답을 적절한 언어처리 기법을 통해 텍스트로부터 추출하여 제공하는 시스템이다. 이러한 언어처리 기법을 이용한 질의응답 시스템에서 시스템의 성능 향상에 도움을 줄 수 있는 것이, 실세계의 지식을 저장하고 있는 지식베이스라 할 수 있다. 지식베이스가 가지고 있는 실세계의 지식을 어떻게 효율적으로 활용하느냐에 따라 질의 처리 분석과 정답 확률을 향상시킬 수 있는 것이다. 본 논문에서는 실세계의 지식을 어느 정도 체계적 의미적으로 반영하고 있는 것을 백과사전으로 판단하여, 백과사전의 '인물' 범주(category)를 중심으로 백과사전 지식베이스의 틀을 마련하고자 하였다. 또한 어휘의 계층적 구조를 중심으로 한 온톨로지를 백과사전 지식베이스와 유기적으로 연결시킴으로써 보다 의미 있는 지식베이스를 형성하는 방안을 모색하고자 하였다.
오픈 도메인 질의 응답에서 질의에 대한 답변은 질의에 대한 관련 문서를 검색한 다음 질의에 대한 답변을 포함할 수 있는 검색된 문서를 분석함으로써 얻어진다. 문서내의 테이블이 질의와 관련이 있을 수 있음에도 불구하고, 기존의 연구는 주로 문서의 텍스트 부분만을 검색하는 데 초점을 맞추고 있었다. 이에 테이블과 텍스트를 모두 고려하는 질의응답과 관련된 연구가 진행되었으나 테이블의 구조적 정보가 손실되는 등의 한계가 있었다. 본 연구에서는 테이블의 구조적 정보를 모델의 추가적인 임베딩을 통해 활용한 오픈 도메인 질의응답 시스템인 R3를 제안한다. R3는 오픈 도메인 질의 응답 데이터셋인 NQ에 기반한 새로운 데이터셋인 NQ-Open-Multi를 이용해 학습 및 평가하였으며, 테이블의 구조적 정보를 활용하지 않은 시스템에 비해 더 좋은 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.