• Title/Summary/Keyword: 질의어 관련 이슈

Search Result 6, Processing Time 0.018 seconds

Related Term Extraction with Proximity Matrix for Query Related Issue Detection using Twitter (트위터를 이용한 질의어 관련 이슈 탐지를 위한 인접도 행렬 기반 연관 어휘 추출)

  • Kim, Je-Sang;Jo, Hyo-Geun;Kim, Dong-Sung;Kim, Byeong Man;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Social network services(SNS) including Twitter and Facebook are good resources to extract various issues like public interest, trend and topic. This paper proposes a method to extract query-related issues by calculating relatedness between terms in Twitter. As a term that frequently appears near query terms should be semantically related to a query, we calculate term relatedness in retrieved documents by summing proximity that is proportional to term frequency and inversely proportional to distance between words. Then terms, relatedness of which is bigger than threshold, are extracted as query-related issues, and our system shows those issues with a connected network. By analyzing single transitions in a connected network, compound words are easily obtained.

Query Related Issue Detection using Related Term Extraction (연관 어휘 추출을 통한 질의어 관련 이슈 탐지)

  • Kim, Je-Sang;Kim, Dong-Sung;Jo, Hyo-Geun;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.133-136
    • /
    • 2013
  • 근래 트위터와 페이스북 등의 SNS(Social Network Service)에서 일반 대중의 관심사나 트렌드 등의 이슈를 탐지하는 많은 연구가 이루어지고 있다. 본 논문에서는 검색어에 대한 연관 어휘 추출을 통해 검색어에 연관된 이슈나 화제를 트위터에서 추출하기 위한 방법을 제안한다. 본 논문에서는 연관성이 높은 단어는 서로 가깝게 발생할 것으로 기대하고, 단어 간 거리가 가까울수록, 공기빈도가 높을수록 커지는 단어연관도 계산법을 제안한다. 연관도 값이 임계치를 넘는 어휘를 연관 어휘로 보고 네트워크의 형태로 관련 이슈를 제시한다.

  • PDF

Information Retrieval from XML Documents based on Contents (내용기반 XML 문서의 검색)

  • 김수희;조명찬;한예지
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.73-75
    • /
    • 2003
  • 이 연구에서는 XML 문서의 효율적인 검색을 위해 XML 데이터에서 색인어를 추출하고 가중치를 부여하여 내용기반 인덱스를 구축하고, 질의와 문서간의 유사도가 높은 문서들을 사용자에게 제공함으로써 기존의 경로 중심 혹은 패턴매칭 형태의 XML 문서 검색 기능을 확장하고자 한다. 내용기반 검색을 지원하는 XML 문서 검색시스템을 설계하고, 내용기반 검색과 관련한 이슈들을 논의한다. 개발 중에 있는 연구용 프로토타입 시스템을 이용하여 질의에 대한 내용기반 검색 결과를 간단히 소개한다.

  • PDF

Design and Implementation of a Web Mining System Using WMSQL (WMSQL을 이용한 Web Mining System의 설계 및 구현)

  • 최성경;박민호;이근호;백인구;한기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.166-168
    • /
    • 2000
  • World-Wide Web(WWW)이 발전하면서 웹으로부터 사용자가 원하는 정보를 효과적으로 찾기 위한 정보검색 방법론이 연구가들로부터 중요한 이슈로서 대두되었고 이에 기반하여 여러 상용 정보검색 시스템들이 등장하게 되었다. 그러나, 이러한 정보검색 시스템들은 웹에 존재하는 데이터의 비구조화와 다양성, 사용자의 다양성, 그리고 정보의 질과 양이 문제로 인하여 사용자의 의도와 요구에 맞는 정보를 구하기 어렵다. 또한, 웹 상의 많은 데이터들로부터 단순히 일반적인 정보만을 얻어 이용할 뿐 효과적인 지식의 탐사나 관리 기능을 갖고 있지 않다. 본 논문에서는 이전의 정보검색 시스템들이 갖는 문제점을 분석하고 이를 보완하고자 웹에 대한 지식 발견(Knowledge Discovery)의 새로운 시도인 웹 마이닝(Web Mining)에 대한 관련 연구를 토대로 웹 마이닝 시스템을 설계 및 구현한다. 특히, 사용자의 의도를 정확히 전달하기 위하여 기존의 SQL 과 유사한 형태의 질의어인 WMSQL을 사용하여 웹 문서의 내용에 직접적인 웹 마이닝을 수행하는 Web Content Mining을 개발함으로서 웹의 비구조화된 데이터로부터 의미있고 함축적인 지식을 추출할 수 있도록 한다.

  • PDF

Implementation of XML Query Processing System Using the Materialized View Cache-Answerability (실체뷰 캐쉬 기법을 이용한 XML 질의 처리 시스템의 구현)

  • Moon, Chan-Ho;Park, Jung-Kee;Kang, Hyun-Chul
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.293-304
    • /
    • 2004
  • Recently, caching for the database-backed web applications has received much attention. The results of frequent queries could be cached for repeated reuse or for efficient processing of the relevant queries. Since the emergence of XML as a standard for data exchange on the web, today's web applications are to retrieve information from the remote XML sources across the network, and thus it is desirable to maintain the XML query results in the cache for the web applications. In this paper, we describe implementation of an XML query processing system that supports cache-answerability of XML queries, and evaluate its performance. XML path expression, which is one of the core features of XML query languages including XQuery, XPath, and XQL was considered as the XML query. Their result is maintained as an XML materialized view in the XML cache. The algorithms to rewrite the given XML path expression using its relevant materialized view proposed in [13] were implemented with RDBMS as XML store. The major issues of implementation are described in detail. The results of performance experiments conducted with the implemented system showed effectiveness of cache-answerability of XML queries. Comparison with previous research in terms of performance is also Provided.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.