이 연구의 목적은 대량의 최신정보를 제공하는 정보필터링 시스템에서 이용자 피드백에 의해 수정질의를 자동생성하여 재검색을 수행함으로써 검색 성능을 최적화할 수 있는 방안을 찾는 데 있다. 이용자가 입력한 초기질의를 사용하여 정보필터링 시스템이 검색한 문헌에 대해 이용자가 적합성 여부를 온라인으로 입력하도록 하고, 이 피드백 결과를 토대로 '중복제거법'과 ‘저빈도제거법' 두 가지 방법에 의해각각 17개의 수정질의를 생성하여 재검색한 결과를 초기 검색결과와 비교 분석하였다. 수정질의는 각각의 방법마다 17개 패턴의 불논리 질의형태를 미리 만든 다음 초기질의에 디스크립터와 분류기호를 결합하여 생성하였으며, 재검색 결과에 대한 적합성 평가를 통해 최적의 수정질의식을 도출하였다.
UMLS(2003AA edition 기준)의 메타시소러스는 다국어를 지원하며 875.233개의 개 (concept)과 2,146,897개의 개념명(concept name)을 포함한다. 현재 UMLS 메타시소러스 검색을 제공하는 PubMed나 NLM에서는 UMLS에서는 개념명에 존재하지 않는 잘못된 질의나, 잘못된 구문 또는 개념명의 일부를 이용한 검색이 불가능하다. 이는 사용자가 UMLS에서 정보를 얻기 위해서는 정확한 의학용어를 숙지해야 되며. UMLS 메타시소러스의 데이터가 잘못 되었을 경우 정보를 얻을 수 없다. 본 연구에서는 이러한 문제점을 보완하기 위해서 자연어처리에서 연구되고 있는 문자열 간의 유사도 측정방식을 적용하여 잘못된 질의어에 대한 자동수정 기능을 이용한 메타시소러스 검색방법을 제안한다. 제안한 방법에서는 질의어를 자동수정하기 위하여 철자사전을 자동으로 추출하고 문자열 비교알고리즘을 도입하여 질의어와 철자사전간의 용어의 유사도를 측정한다. 유사도에 의하여 얻어진 용어를 메타시소러스의 형식에 맞게 변환하여 질의에 대한 최적의 결과를 얻을 수 있도록 한다. 제안된 방법의 성능을 평가하기 위해서 최근(2003년 8월) bi-gram 방식을 도입한 NLM에서의 시스템과 비교 평가한다.
공간 데이터베이스에서 사용되는 데이터는 그 양이 방대하고 복잡하여 이를 효율적으로 저장, 관리하는 색인이 필요하다. 여러 공간 색인 방법들 중에서 R-tree는 삽입과 삭제가 빈번히 발생하는 동적인 환경에서 효율적인 질의 성능을 보이는 것으로 알려져 있다. R-tree는 삽입되는 데이터의 순서에 따라 트리의 구조가 달라질 수 있는데, 주어진 데이터가 수정이 자주 발생하지 않는다며 데이터 입력 순서를 결정하여 질의 성능이 가장 좋은 트리를 구성할 수 있다. 본 논문에서는 데이터가 자주 수정되지 않는 환경에서 노드간의 중첩을 가장 최소화 할 수 있는 데이터 입력 순서를 결정하기 위해 클러스터링을 이용한 새로운 방법인 CSR-tree를 제안하고자 한다. CSR-tree는 일반 R-tree와 hilbert packed R-tree 방법보다 향상된 질의 성능을 보인다.
일반적으로 공간질의 처리는 복잡한 대용량 공간데이타를 대상으로 수행하기 때문에 많은 비용과 시간이 필요하다. 특히, 클라이언트/서버 공간 데이터베이스 환경에서는 클라이언트가 자주 이용하는 질의를 반복하여 처리하는 경우에 서버의 부하가 증가되며 질의 응답시간도 길어지게 된다. 따라서 클라이언트/서버 공간 데이타베이스에서 클라이언트측의 공간질의를 효율적으로 처리하기 위해서는 데이터 캐싱 등의 기법이 필요하다. 이를 위하여 본 논문에서는 클라이언트에서 자주 이용되는 공간질의를 뷰로 정의하고 클라이언트에서 실체화하는 방법을 이용하여 데이터 캐싱을 처리한다. 그리고 클라이언트에 실체화된 뷰를 최대한으로 이용하기 위하여 질의 수정 기법을 적용한 공간질의 처리 방법을 제시한다.
XML이 확산되면서 이를 저장하고 검색하는 XML DB와 검색 앤진들이 만들어졌다. 그러나, 이들 대부분의 시스템에서 초기 질의만으로 문서를 검색하고, 그 대상도 질의 조건에 완전히 정합되는 문서로만 제한하고 있다. 그러나, 사용자가 데이터에 대한 정확한 정보가 없는 경우에는 자신의 요구를 제대로 표현하기가 힘들고 또, 한번의 질의로 사용자 요구에 정확하게 부합되는 문서를 검색하기도 매우 어렵다. 따라서, 본 논문에서는 질의 조건에 부분적으로 정합되는 문서도 검색하고, 사용자 피드백을 받아서 조기 질의를 사용자 요구에 좀 더 근접만 문서들을 검색할 수 있도록 수정하여 재질의를 하는 시스템을 설계하였다.
객체지향 데이터베이스 시스템의 표준 질의어로 사용되는 OQL은 SQL과 달리 select-from-where절 어디서나 중첩 질의를 자유롭게 허용하며, 이러한 중첩 질의는 질의어 수행 성능에 중요한 영향을 미치므로, OQL을 처리하는 질의 처리기에서는 이를 반드시 고려해 주어야 한다. 본 논문은 모노이드 컴프리핸션 해석(monoid comprehension calculus)을 이용하여, OQL 질의 처리기에서 중첩 질의의 중첩 구조를 제거할 수 있도록 해주고, 나아가 기존 질의 처리기에서 중첩질의 처리 기능을 추가하는데 있어, 이미 구현되어 있는 질의 최적화 모듈과 질의 수행 모듈의 수정을 최소화할 수 있는 중첩 질의 구조 제거용 전위 모듈(unnesting front-end)을 설계하고 구현하였다.
최근 빠르게 발생하는 빅데이터 스트림이 다양한 분야에서 활용되고 있다. 이러한 빅데이터 전체를 수집하고 처리하는 것은 매우 비경제적이므로, 데이터 스트림 중 필요한 데이터를 걸러내는 필터링 과정이 필요하다. 본 논문에서는 아파치 스톰(Apache Storm)을 사용하여 데이터 스트림의 질의 필터링 시스템을 구축한다. 스톰은 대용량 데이터 스트림을 처리하기 위한 실시간 분산 병렬 처리 프레임워크이다. 하지만, 스톰은 입력 데이터 구조나 알고리즘 변경 시, 코드의 수정과 재배포, 재시작 등이 필요하다. 따라서, 본 논문에서는 이 같은 문제를 해결하기 위해 아파치 카프카(Apache Kafka)를 사용하여 데이터 수집 모듈과 스톰의 처리 모듈을 분리함으로써 시스템의 가용성을 크게 높인다. 또한, 시스템을 웹 기반 클라이언트-서버 모델로 구현하여 사용자가 언제 어디에서든 질의 필터링 시스템을 사용할 수 있게 하며, 웹 클라이언트를 통해 입력한 질의를 자동적 분석하는 쿼리 파서를 구현하여 별도의 프로그램의 수정 없이 질의 필터링을 적용할 수 있다.
디지털 컨텐츠의 증가에 따라 이들의 효율적인 검색과 관리를 위하여 내용 기반 영상 검색에 관한 많은 연구가 이루어지고 있다. 이러한 내용기반 영상 검색의 질의 방법으로는 유사한 영상을 질의로 사용하는 QBE와 영상을 사용자가 직접 스케치하여 질의에 사용하는 QBS 가 대표적이다. 본 논문에서는 질의로 사용할 정확한 영상을 가지고 있어야 하는 QBE 방법의 제약과 질의할 영상의 전체를 스케치해야 하는 QBS 의 문제점을 보완하는 개선된 질의 방법을 제안한다 제안하는 방법은 입력 영상의 단순화를 통해 스케치에 사용할 밑그림을 제공하고 사용자가 간단한 수정을 거쳐 질의 영상을 얻을 수 있도록 하는 방법으로 기존의 질의 방법을 개선하여 사용자의 편리성을 향상시킨다.
웹 기반의 교육의 활성화로 이를 학습에 응용하기 위한 노력으로 GVA(Global Virtual Academy) 등과 같은 학습 보조 도구가 많이 발표하고 있는 설정이다. 대부분의 학습 보조 도구들은 각각의 특성들만 제시할 뿐 통합된 표준호가 되어 있지 않다. 최근 가상교육에서 학습기술이 상호운용성에 기반한 표준화의 일반적인 필요성을 인식하게 됨에 다라 가상교육의 국제표준을 소개하고 체계적으로 AICC(Aviation Industry CBT Committee), IMS Global Learning Consortium, ADL(Advanced Distributed Learning)을 중심으로 진행되어 오고 있다. 웹 기반의 교육을 통한 질의 응답의 학습방법을 고려한 도구가 없으므로 질의 응답 학습 도구(QALT)지원을 위한 표준화된 LTSA(Learning Technology Standard Architecture) 기반 시스템을 학습 객체에 대한 질의 응답과 개방형 단순 질의 응답 측면으로 구현한다. 그러므로 개방형 단순 질의 응답 측면을 구현하기 위해 학습 기술의 표준화로 제시되어 있는 LOM(Learning Object Metadata)을 통해 설계 자체를 체계화하고 전체적으로 명세 작업을 가능하게 하여 일관성을 유지하는 정련화된 문서로 질의 응답할 수 있도록 한다. 또한, Web 상에서의 Network delivery와 DTD(Document Type Definition)와 Stylesheet를 사용자가 쉽게 수정 가능하며 다양한 Linking Type을 제공하므로 단순 질의 응답 문서의 형식을 XML로 한다
질의응답 시스템에서 정답선택의 정확률을 향상시키기 위해 본 논문은 패턴과 휴리스틱을 기반으로 하는 질의유형 추출 시스템을 구현하는 방법을 제안한다. 질의유형은 DBPedia에서 사용하는 클래스타입을 기반으로 추출되며 질의유형에 포함하는 키워드패턴들을 수집하여 키워드패턴 데이터를 생성한다. 그 후 한국어 질의에서 많이 발생하는 유형을 분석하여 휴리스틱을 이용해 사용자가 의도한 질의 유형을 출력한다. 제안시스템은 기존 연구에 비해 구축과 수정이 쉽다는 장점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.