• Title/Summary/Keyword: 질소 산화물 제거

Search Result 56, Processing Time 0.025 seconds

Pre-treatment Characteristics of Night Soil by Microbubble (마이크로버블을 이용한 분뇨의 전처리 특성)

  • Lim, Ji-young;Kim, Hyun-sik;Park, Soo-young;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2016
  • This study was conducted to investigate the effect of OH radicals on organic matter oxidation and suspended solids removal using microbubble as a pre-treatment technique to reduce the organic load of night soil in connection with sewage. The experiment was conducted for three months at HRT 4 hours using pressurized type microbubble generator. The mean SS removal efficiency was achieved 71%. The average removal efficiency of $TCOD_{Cr}$, TBOD, TN and TP were achieved for 51.5%, 47.9%, and 14.7% respectively, as scum and SS were removed by flotation separation. The removal efficiency of soluble organic matters were 25.0%, 17.1% for $SCOD_{Cr}$, SBOD by air microbubble supply. Soluble nitrogen and phosphorus were removed average of 11.9% and 7.4%, respectively. As s result, it was confirmed that soluble organic matters were removed by air microbubble supplied. Generated OH radicals when the microbubble was collapsed, can decompose the soluble organic matters. Therefore, The microbubble flotation process was installed at the front of night soil treatment process, it will contribute to the stable operation of the subsequent biological treatment facility by oxidation of the dissolved organic matters as well as removal of SS by flotation separation.

Nitrogen Removal from ADEPT Effluent of Piggery Wastewater using Nitritation/Denitiritation System (ADEPT공정을 거친 돈사폐수의 아질산화-아탈질 공정을 이용한 질소제거)

  • Lee, Hwa-Sun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.134-139
    • /
    • 2006
  • Partial nitirification and denitrification process has been reported to be technically feasible and economically favorable, especially for wastewater treatment with high ammonium concentration or low Carbon/Nitrogen ratio. This research was performed to survey nitrite accumulation by nitritation in treating ADEPT effluent of piggery wastewater, which contains highly concentrated ammonia. To estimate the possibility of nitrite accumulation, DO concentration and SRT were investigated as key operational parameters. This result proved that nitritation to nitrite was steadily obtained under short sludge retention time. Oxygen limitation was proved to be just a subsidiary parameter. Energy efficiency of nitritation-denitritation process was higher than complete nitrification-denitrification because external carbon requirement for denitritation could be saved. Though the influent contained significant nonbiodegradable organic substrate, total nitrogen removal efficiency was more than 51% in nitritation-denitritation system.

Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal (주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향)

  • Park, Hongkeun;Rhu, Daehwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

Chipped Titanium Scraps as Raw Materials for Cutting Tools (타이타늄 밀링/터닝 스크랩의 절삭공구 소재화)

  • Kwon, Hanjung;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Scraps are a byproduct of the machining process used for transforming titanium ingots into useful mechanical parts. Scraps take two forms, namely, bulky scraps, which are produced by cutting, and chipped scraps, which are produced by milling. Bulky scraps are comparatively easier to recycle because of their small surface area and less oxygen content; as a result, they pose only a small risk of explosion. In contrast, chipped scraps pose a higher risk of explosion, because of which, their recycling is complicated, resulting in most such scraps being discarded. With the aim of avoiding this waste, we proposed a novel process for converting chipped scraps into stable carbide materials. Methods typically applied to reduce particle size and impair the formation of solid solution type phase in the carbide materials were used to improve the mechanical properties of carbides prepared from chipped scraps. Our novel recycling process reduced carbide production costs and improved carbide quality.

DC 반응성 스퍼터링법으로 증착한 TiN/Al, TiCN/Al 박막의 전기적.기계적 특성 및 내부식성 평가

  • Lee, Hyeon-Jun;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.346-347
    • /
    • 2012
  • 최근 화석연료 대체 에너지원으로서 자동차용으로 연구 개발 및 응용되고 있는 고분자 전해질 연료전지(PEMFC: Proton exchange membrane fuel cells)에서 분리판(Bipolar Plate)은 스택 전체 무게의 80%, 스택 가격의 60% 정도로 가장 높은 비중을 차지한다. 분리판은 연료와 산화제를 공급해주는 통로 및 전지 운전 중에 생성된 물을 제거하는 통로 역할과 anode, cathode로서 전극 역할을 통해 스택 전력을 형성하는 핵심 기능과 전지와 전지 사이의 지지대 역할을 한다. 따라서 분리판은 전기전도성, 내부식성 및 기계적 특성이 우수해야함은 물론이고, 얇고 가벼우며 가공성이 뛰어나야 한다. 현재 가장 많이 사용되고 있는 금속 분리판 소재 중 스테인리스 스틸은 전기적, 기계적 특성 및 내부식성이 우수한 반면, 가격이 비싸고, 중량이 무거운 단점이 있다. 따라서 본 연구에서는 DC 반응성 마그네트론 스퍼터링법으로 전기적, 기계적 특성 및 내부 식성이 우수한 TiN, TiCN 박막을 스테인리스에 비해 중량이 1/3, 소재 단가가 1/4인 알루미늄 기판 위에 증착하여 박막 물성을 평가하였다. DC Power는 400 W, 기판과 타겟 사이의 거리는100 mm, 공정 압력은 0.5 Pa로 고정하였고, 3 inch의 지름과 순도 99.95%를 갖는 티타늄 타겟을 사용하였다. 공정 가스는 Ar을 주입하였으며, 질소와 탄소의 공급원으로는 질소($N_2$)와 메탄($CH_4$) 가스를 사용하여 챔버 내 주입혼합가스의 전체 유량을 50 sccm으로 고정시켰다. 증착된 박막의 전기적, 기계적 특성을 측정하였고, X-ray diffraction (XRD), Scanning electron microscope (SEM)을 이용하여 박막의 미세구조 및 표면 상태를 확인하였다. 또한, 내부식 특성을 평가하기 위해 potentiostatic, potentiodynamic 법을 이용하여 박막의 부식저항을 측정하였다. 증착된 TiN 박막의 경우 질소 함량의 증가에 따라 박막 증착속도는 감소하는 경향을 보였다. 이는 타겟 부근의 질소 라디칼 비율이 증가함에 따라 질화반응이 촉진된 것으로 생각된다. 또한, 증착된 TiN과 TiCN 박막은 반응성 질소 유량과 탄소 유량에 따라 각각 다른 미세구조를 가지는 것을 확인하였다. TiN과 TiCN은 NaCl형의 면심입방격자(FCC)로 같은 구조이며, 격자상수가 비슷하여 전율고용되어 TiCN을 형성하고, 탄소와 질소의 비에 따라 전기적 기계적 특성이 달라짐을 확인하였다.

  • PDF

Analysis of the Contents in Stabilized Chlorine Dioxide (안정화 이산화염소의 성분분석)

  • Shin, Ho-Sang;Oh-Shin, Yun-Suk
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.403-407
    • /
    • 1999
  • A method for detecting chlorine dioxide in drinking water was developed by the modified iodometric titration. This method requires prior removal of interfering chemicals such as chlorine and/or other oxidants: the interferents are removed by $N_2$ purging. Chlorite and chlorate were successfully quantified by the ion chromatography-conductivity detection. Stabilized chlorine dioxide that is commercially available contained only traces of chlorine dioxide (0.01-0.09%). In reality, its main component is chlorite.

  • PDF

Removal Characteristics of Nitrogen Oxide in Electromagnetic-Catalytic Plasma Reactor (전자계-촉매형 플라즈마 반응기의 질소 산화물 제거 특성)

  • 이현수;박재윤;이동훈;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.640-648
    • /
    • 2002
  • This study is to develop electromagnetic-catalyst application plasma reactors for indoor air purification. Nitrogen Oxide(NOx) removal characteristics are measured in the electromagnetic catalyst application plasma reactors with various parameters and the effect of catalyst or/and magnetic field are investigated on the NOx removal. And AC or DC high voltage is applied for corona discharge, flow rates are 150~1500 $\ell/min$ and NO initial concentration is about 10 ppm. $Mn0_2$ and $TiO_2$ catalysts to increase NOx removal rate are used. In the results, NOx removal rate by AC power is about 10 % higher than that by DC power under the experimental condition of 700 $\ell/min$, 5 magnets, $MnO_2$ and $Ti)_2$ catalysts. When magnet is applied to the reactor, NOx removal rate increased. Also, the reactor with $MnO_2$ and $Ti)_2$ catalyst and magnet have the best removal rate.

Characterization of V/TiO2 Catalysts for Selective Reduction (V/TiO2 촉매의 선택적 촉매 환원 반응특성 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.512-518
    • /
    • 2008
  • The present work studied the selective catalytic reduction (SCR) of NO to $N_2$ by $NH_3$ over $V/TiO_2$ focusing on NOx control for the stationary sources. The SCR process depends mainly on the catalyst performance. The reaction characteristics of SCR with $V/TiO_2$ catalysts were closely examined at low and high temperature. In addition, adsorption and desorption characteristics of the reactants on the catalyst surface were investigated with ammonia. Seven different $TiO_2$ supports containing the same loading of vanadia were packed in a fixed bed reactor respectively. The interaction between $TiO_2$ and vanadia would form various non-stoichiometric vanadium oxides, and showed different reaction activities. There were optimum calcination temperatures for each samples, indicating different reactivity. It was finally found from the $NH_3-TPD$ test that the SCR activity was nothing to do with $NH_3$ adsorption amount.

Isolation and Characterization of Ammonia Oxidizing Bacteria, Nitrosomonas sp. PK1 (암모니아 산화 세균 Nitrosomonas sp. PK1의 분리 및 특성)

  • Kim, Dae-Kyung;Kim, Hyun-Kuk;Kim, Jong-Soek;Suh, Kuen-Hack;Kim, Sung-Koo;Kong, In-Soo
    • Journal of Life Science
    • /
    • v.7 no.2
    • /
    • pp.107-111
    • /
    • 1997
  • To remove dissolved $NH_{4}$$^{+}$ in the aquaculture system, one ammonia oxidizing bacterium, Nitrsomonas sp. PK1, was isolated from samples collected in many aquacultural place and sludges of waste water. The stationary phase of this atrain was reached after 9 days, and the maximum $NO_{2}$ production was shown from 3 days to 9 days. In the selective medium, 0.1% of glucose was the good carbon source for growth. However, the $NO_{2}$productivity was repressed by the addition of glucose to the medium. When $Zn^{++}$ ion was supplemented to the medium, growth and the $NO_{2}$ productivity was increased, 10mM of $ZnCl_{2}$ was the optimal concentration for growth and 1 mM of $ZnCl_{2}$ was the optimal concentration for the production of $NO_{2}$, respectively.

  • PDF

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.