• Title/Summary/Keyword: 질소 농도

Search Result 2,713, Processing Time 0.046 seconds

Changes of Sugars and Nitrogeneous Compounds in Ginseng Extracts by Extracting Conditions (인삼의 추출조건에 따르는 Extract의 당류 및 질소화합물의 변화)

  • 우상규
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.80-93
    • /
    • 1986
  • The tail portion of dried 6-year old white ginseng was extracted and sugars and nitrogen compounds were also evaluated for chemical properties depending on varying conditions of extractions. The factors studied were extraction temperature in the range of 70-$100^{\circ}C$, ethanol concentration of 0-90% and the times of extractions which was taken 8 hours per each extraction in water at $80^{\circ}C$. For the effect of ethanol concentration in the extraction solvent, it was found that the amounts of free, reducing and total sugars and starch recovered in extract were almost linearly decreased along with the increase of concentration and the nonprotein nitrogen accounted over 84% of total nitrogen in extract. As ethanol concentration became increased, extractions of total nitrogen and water souluble nonprotein nitrogen were decreased especially in 90% ethanol. For the extraction temperature, all the sugar fractions with water and 70% ethanol except free sugar have tended to increase along with the temperature raised from 70 to $100^{\circ}C$ and it was found there is little changes of nitrogen compounds in the temperature range except a rapidly increase in water soulble protein at $100^{\circ}C$. For the times of extractions, showed that most of extractable compounds were extracted in 3 times of extractions with water at $80^{\circ}C$. It was shown that more than 95f) of sugars and 80% of nitrogen compounds were yielded with water extraction. Accordingly it was efficient to extract with water or 70% ethanol in 3 times in terms of !actor and energy consumption.

  • PDF

Effect of Ammonium Ion on the Production of a Polysaccharide, Methylan from Methanol by Mentylobacterium organophilum (Methylobacterium organophilum에 의한 메탄올로부터 메틸란의 생산에 대한 암모니아 이온의 영향)

  • 오덕근;임현수김정회
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • The effect of nitrogen source on production of a high viscosity exopolysaccharide, methylan, from methanol by Mentylobacterium organophilum was investigated in fed-batch culture. During the fermentation, cells continued to grow even after the nitrogen source added to the medium was depleted and methylan production was stimulated under the condition which ammonium ion was depleted. Cell growth increased proportionally to the initial concentration of ammonium ion in the medium, but methylan production was significantly inhibited at the high concentration of ammonium ion. As the initial concentration of ammonium ion increased, the specific growth rate, the specific product formation rate and the specific substrate consumption rate decreased due to the inhibitory effect of excess ammonium ions. In order to reduce the inhibitory effect by high concentration of ammonium ion. The control of ammonium ion concentration within the desired level(usually $0.45g/\ell$) was necessary. When ammonium ion concentration was maintained below $0.15g/\ell$ by exponential feeding, methylan production could be increased up to $12.5g/\ell$.

  • PDF

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

Stoichiometric Study for Nitrogen Removal in Anoxic-oxic Process (무산소-산소 공정에서 양론적 질소제거 연구)

  • Lee, Byung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1222-1227
    • /
    • 2005
  • Optimal sludge recycling ratio for maximum total nitrogen(TN) removal efficiency was calculated stoichiometrically using nitrification and denitrification reaction with given influent water qualities in anoxic-oxic process which was one of the popular nitrogen removal system. The water quality items for stoichiometric calculation were ammonia, nitrite, nitrate, alkalinity, COD, and dissolved oxygen which could affect nitrification and denitrification. Optimal sludge recycling ratio for maximum TN removal efficiency was expressed by those five influent water qualities. TN concentration calculated stoichiometrically had kept good relationship with reported TN concentration in each tank and final effluent. In addition, it was possible to expect the TN concentration in final effluent by stoichiometric calculation within ${\pm}5.0\;mg/L$.

The Evaluation of Disinfection and Operation of Large Scale Anoxic Chamber System for Museum Insects (대용량 저산소 농도 살충 챔버 시스템을 이용한 박물관 해충의 살충력 및 운용성 평가)

  • Oh, Joon Suk;Choi, Jung Eun
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • Large scale anoxic chamber system(volume $28m^3$) was developed and installed at The National Folk Museum of Korea for the first time in Korea. In order to get optimal anoxic treatment condition, we compared the disinfection of adults, larvae and eggs of cigarette beetles using nitrogen and argon. The time for complete disinfection of cigarette beetles in pine wooden blocks exposed to nitrogen at oxygen concentration 0.01% and 50% in relative humidity were 15 days at $20^{\circ}C$, 10 days at $25^{\circ}C$, and 7 days $30^{\circ}C$. Time were 10 days at $20^{\circ}C$, 7 days at $25^{\circ}C$, and 5 days $30^{\circ}C$ in argon anoxic atmosphere. From the mortality of cigarette beetles, optimal disinfection condition was oxygen concentration 0.01%, $25^{\circ}C$ in temperature, 50% in relative humidity and exposure time 21 days at nitrogen atmosphere. And when large scale anoxic chamber system was supplied nitrogen by nitrogen generator for anoxic treatment of many collections or large collections, it could be operated stably. To verify optimal disinfection condition, museum insects(adults, larvae, pupae and eggs of cigarette beetles in pine wooden blocks, cotton fabrics and Korean paper book, adults and larvae of drugstore beetles in pine wooden blocks, cotton fabrics and Korean paper book, larvae of varied carpet beetles in pine wooden block and silk fabrics, adults and larvae of hide beetles and adults of rice weevils in breeding boxes) which exposed at optimal disinfection condition, were completely killed.

Behavior of NO3-N Derived from Pig Manure in Soil (돈분(豚糞)에서 유래(由來)한 질산태질소(窒酸態窒素)의 토양(土壤)중 행동(行動))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.353-359
    • /
    • 1996
  • Micro plot study was conducted to elucidate the behavior of nitrogen derived from animal manure in soil and to obtain the fundamental information on animal waste management. Soils used in this experiment were sandy loam and loam. Soil water samplers (1m length ceramic cup tube) were installed at 90cm depth of soil to collect the percolate. Fresh and fermented pig manure were applied at the rate of 0, 50, 100 ton per ha. Maize was grown to evaluate the effect of crop on nitrogen behavior through soil profile. Concentration of nitrate nitrogen in percolate increased by application of pig manure. This trend was more obvious at the loam with fermented pig manure than sandy loam with fresh pig manure treatment. The concentration of nitrate nitrogen was lower under the maize cultivation than bare soil condition by 64.6-68.9%. Concentration of Ca, Mg and Na of soil and percolate increased as nitrate nitrogen concentration increased. The equivalent ratio of cation to nitrate nitrogen of percolate was increased by application of pig manure. This result showed that canon leaching was accompanied by nitrate nitrogen. Concentration of nitrate nitrogen of subsurface soil was increased by pig manure application.

  • PDF

Nutrient Removal Potential of water Hyacinth Cultured in Nutrient-enriched Water and Swinery Wastewater (부레옥잠의 수중영양염 제거 잠재력에 관한 고찰)

  • 전만식;김범철
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.117-124
    • /
    • 1999
  • Nutrients removal by water hyacinth, Eichhornia crassipes (Mart.) Solms from nutrient enriched waters and swinery wastewater were evaluated. The contents of nitrogen and phosphorus of dried water hyacinth increased from 1.4 to 3.3% and 0.21 to 0.80% when water hyacinth available N and P in the culture medium were increased from 0.7 to 5.0 mgN/1 and 0.06 o 1.5 mgP/l. respectively. Maximum N and P contents were found to be 4.1 and 0.90%, respectively. The significant relationship was observed between the standing crop of water hyacinth and the biomass yield per unit area and time. Biomass yield increased gradually until standing crop reached 15 kg wet wt./m$^2$, and then rapidly decreased. The high biomass yield of up to 0.5 kg/m$^2$/day was obtained in the range of 7 to 20 kg/m$^2$of standing crop. The potential removal rates of N and P by the water hyacinth during summer were found to be 2,250 to 2,710 mgN/m$^2$/day and 570 to 595 mgP/m$^2$/day, respectively, when 15 kg/m$^2$in standing crop and nutrient concentrations of culture medium were ranged from 1.24 to 6.2 mgP/1 and 3.2 to 32.5 mgN/1, respectively, Inorganic N and P concentrations of swinery wastewater were in the range of 82 to 121 mgN/1 and 22 to 79 mgP/1, respectively. Nitrogen and P removal rates of water hyacinth cultured in swinery wastewater were found to be in the ranges of 2,000 to 2,600 mgN/m$^2$/day and 157 to 254 mgP/m$^2$/day, respectively, at 10 times diluted water of swinery wastewater.

  • PDF

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens) as Influenced by Nitrogen Concentrations in the Fertigation Solution (질소 시비농도가 잎들깨의 생육, 생리장해 발현 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2007
  • Objective of this research was to investigate the effect of nitrogen concentrations in the fertilizer solution on growth and development of nutrient deficiency in leaf perilla (Perilla frutesens). The nutrient concentrations in above-ground plant tissue, petiole sap and soil solution of root media were also determined. Nitrogen deficiency resulted in dwarfed growth, small leaves, and bright yellow color of older leaves. The leaves of deficient plants became uniform yellowing in color and finally necrosis occurred on the deficient leaves. Elevation of N concentrations in the fertigation solution from 0 to 20 mM increased the crop growth in leaf length and width as well as fresh and dry weights of above ground plant tissue. That also resulted in the increase of chlorophyll contents. However, light toxicity symptoms such as abnormal leaf surface appeared on crops grown in 20 mM N fertilization. The plant growth was commercially acceptable in the treatments of 10 and 15 mM N. The plants with acceptable growth had 0.9 to 1.25% in N contents of above-ground plant tissue, 800 to $3,300mg{\cdot}kg^{-1}$ in the $NO_3-N$ concentrations of petiole sap, and 28.7 to $47.3mg{\cdot}kg^{-1}$ in the $NO_3-N$ concentrations of soil solution (1:2 extract) at 75 days after transplanting.

Impact of extreme annual weather variability on soil moisture and nitrogen age (가뭄과 홍수의 연간 변동성이 토양 수분 및 질소 나이에 미치는 영향)

  • Woo, Dong Kook;Kumar, Praveen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.70-70
    • /
    • 2021
  • 강수의 변동성 중 특히 가뭄과 홍수의 급격한 연간 변화는 기후변화로 인하여 근래에 많이 발생하고 있다. 가뭄이 발생한 이후 홍수가 발생하거나 그와 반대의 현상이 발생하는 것을 날씨 편달(weather whiplash)라고 한다. 이러한 현상은 토양에 매설되어 수분을 저감하는 배수시설로 인하여 토양 수분 변동 및 무기질소 손실에 지배적은 영향을 준다. 이러한 질소 손실은 부영양화를 일으켜 생태계에 막대한 영향을 미치게 된다. 하지만, 토양 무기질소는 토양에서 체류시간이 길기 때문에 강우 변동성에 의해 발생하는 상호작용을 특정하고 분석하기에는 많은 어려움이 따른다. 이 문제를 해결하고자 이번 연구에서는 생태수문모형과 생물지질모형을 결함한 3차원 모델인 Dhara를 이용하여 토양 배수시설에서 유출되는 무기 질소의 농도 및 나이를 분석하였다. 여기서 나이란 화합물이 발생 하여 다른 형태로 변화하는데 걸리는 시간을 의미한다. 집중적으로 관리되는 경작지에 Dhara 모형을 적용하여 본 연구를 수행하였다. 토양 수분과 질소의 나이를 분석한 결과 반응 화합물인 질소의 경우 토양 수분(비반응 화합물)과 비교하여 이전의 강우상태에 많은 영향을 받는 것으로 분석이 되었다. 가뭄이후 홍수가 발생할 때 배수시설에서 발생하는 질소의 유출이 그 반대 기상 환경인 홍수 이후 가뭄이 발생할 때 보다 더 많이 발생한 것으로 나타났다. 하지만 배수 흐름의 경우 질소의 거동과 반대하는 현상을 보였다. 이러한 결과는 질소유출 저감하여 강 및 바다에서 부영양화를 감소하기 위해 강수의 변동성과 연계하여 분석한다면 새로운 질소유출 저감 대책을 수립할 수 있는 가능성을 보여주었다.

  • PDF

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.