• Title/Summary/Keyword: 질소분해율

Search Result 230, Processing Time 0.018 seconds

A Study on the Effect of Chemical Pretreatment for Livestock Wastewater on the Linked Treatment of Sewage (축산폐수 처리 시 화학적 전처리가 연계처리에 미치는 영향 연구)

  • Han, Jun-Suk;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2010
  • In this study, to investigate the effect of chemical pretreatment for livestock wastewater, laboratory scale test for ozonation and linked treatment of sewage were conducted. and the results were obtained as follows. The ozonation of livestock wastewater showed the COD removal rate per hour to be 17%, 78% and 62% at each pH 4, 7 and 10, respectively. With transformation of NBDCOD to biodegradable BDCOD by ozonation, the ratio of SCODcr/TCODcr was increased from 26% to 38%. Accordingly, pretreatment of livestock wastewater affected to the biological post treatment process to elevate removal efficiency by transformation of nonbiodegradable mass to biodegradable mass. As the results of linked treatment of pre-ozonated livestock wastewater and sewage in the MLE process, the treatment efficiencies of TCODcr 93.8%, T-N 74.3%, T-P 89.7%, SS 97.5% were earned at 100% of internal recycle rate. When the internal recycle rate was increased to 150%, the treatment efficiencies of TCODcr 94.5%, T-N 54.5%, T-P 70.8%, SS 98.5% were earned. Also the removal efficiencies of TCODcr 92.6%, T-N 83.1%, T-P 81.9%, SS 98.5% were earned as the internal recycle rate was increased to 200%. Especially, nitrogen removal efficiency in the linked treatment showed 74.3%, 54.5%, 83.1% at 100%, 150% and 200% of internal recycle ratio, respectively, which revealed the tendency of higher removal efficiency than that of sewage treatment.

Processing of Pen Shell By-product Hydrolysate Using Response Surface Methodology (반응표면분석법에 의한 키조개 부산물 단백질 가수분해물의 제조조건)

  • Cha, Yong-Jun;Kim, Eun-Jeong;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.958-963
    • /
    • 1995
  • The hydrolysis of pen shell by-product by the APL $440^{TM}$, selected as the suitable alkaline protease on the basis of cost per unit enzyme activity, was optimized using response surface methodology(RSM). A model equation obtained from the results of RSM could be used for the prediction of degree of hydrolysis(DH) as follows: $%DH=51.126+2.419\;pH+2.415T-2.426S-2.846pH^2-4.211T^2-3.014t^2+2.419S^2$. From the ridge analysis, the conditions favoring the highest degree of hydrolysis were pH 10.2, $61.4^{\circ}C$, 2.58 hrs reaction time, 30.9% substrate concentration, and 0.32% enzyme/substrate ratio. The effect of autolysis affecting degree of hydrolysis in pen shell by-product was negligible. Hydrolysate produced under the optimal condition increased 3.5 times and 7.7 times in amino nitrogen and salinity, respectively, comparing with raw pen shell by-product.

  • PDF

Application of Phytoremediation for Total Nitrogen and Total Phosphorus Removal from Treated Swine Wastewater and Bio-methane Potential of the Biomass (돈분뇨 처리수 유래 질소와 인 제거를 위한 식물정화법 활용과 바이오매스의 바이오메탄 잠재성 연구)

  • Sudiarto, Sartika Indah Amalia;Choi, Hong Lim;Renggaman, Anriansyah
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.21-31
    • /
    • 2015
  • The aim of this study is to determine the removal efficiency of total nitrogen and phosphorus from treated swine wastewater by Phragmites australis and Miscanthus sacchariflorus var Geode Uksae-1, and to determine its biomass total energy value and biomethane potential. Plants were grown with a bedding mixture either soil and sand or soil, sand, and bioceramic. Treeated swine wastewater with Total nitrogen (TN) and Total phosphorus (TP) of 222.78 mg/L and 66.11 mg/L, respectively, was utilized. The TN and TP removal is higher in the bio-ceramic-soil-sand bedding media treatment. The highest TN removal of 96.14% was performed by Miscanthus sacchariflorus var Geode Uksae-1, but the elemental analysis shows that Phragmites australis contains more nitrogen than Miscanthus sacchariflorus var Geode Uksae-1, indicating higher nitrogen uptake. The highest TP removal of 98.12% was performed by Phragmites australis. The cellulose content of the plant grown with the bioceramic-soil-sand bedding was approximately 3-6% higher than that of the plant grown in the soil-sand bedding. Different growing substrates may have an effect on the fiber content of plants. The biomethane potential of the produced biomass of the plants was between 57.01 and $99.25L-CH_4/kg$ VS. The lignin content is believed to inhibit the breakdown of plant biomass, resulting in the lowest methane production in the Phragmites australis grown in the soil-sand bedding media.

벙커-C유 분해미생물의 선발 및 현장 생리적용성 검정

  • Park, Jin-Hui;Kim, Yeong-Sik;Lee, Tae-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.600-604
    • /
    • 2003
  • This study pointed at isolation of bunker-C oil degrading bacteria and then estimation of it's degrading capability in environmental conditions. Degradation ratio of the excellent isolate was appeared to 40.5% and 44.7% when the oil was treated to 1% and 5%, respectively. The isolate was identified to Acinetobater calcoaceticus SEBCM. In pH test, high degrading effect was appeared to about 73% at pH 6 and pH 7, and low degrading ratio was 37% at pH 4. Its growth condition at temperature has not large variation in $15^{\circ}C\;{\sim}30^{\circ}C$, Quantity of nitrogen for it's good growth was ranged of $0.5\;g/L{\sim}2\;g/L$. As these results, we realized that this isolate have good activity when treated to $15\;{\sim}30^{\circ}C$ of temperature and $6{\sim}7$ of pH.

  • PDF

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha (폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구)

  • Ki-Duk Kim;Eun Hee Kwon;Kwang Ho Kim;Suk Hyun Lim;Hai Hung Pham;Kang Seok Go;Sang Goo Jeon;Nam Sun Nho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii (한반도 중부지역 조림지 소나무와 곰솔의 장기적 낙엽 분해율 및 분해과정에 따른 영양염류 동태변화)

  • Lee, Il-hwan;Jo, Soo-un;Lee, Young-sang;Won, Ho-yeon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.374-382
    • /
    • 2021
  • In the present study, we analyzed the decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii in Gongju for 60 months, from 2014 to 2019. P. thunbergii leaf litter decomposed faster than that of P. densiflora. The decay constant of P. densiflora and P. thunbergii leaf litter after 60 months was 3.02 and 3.59, respectively. The initial C/N ratio of P. densiflora and P. thunbergii leaf litter were 14.4 and 14.5, respectively. After 60 months, C/N ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 2.26 and 3.0, respectively. The initial C/P ratio of P. densiflora and P. thunbergii leaf litter were 144.1 and 111.3. After 60 months elapsed, the C/P ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 40.1 and 45.8, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. densiflora leaf litter was 231.08, 130.13, 35.68, 48.58, and 36.03%, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. thunbergii leaf litter was 143.91, 74.02, 28.59, 45.08, and 44.99%, respectively. The findings of the present study provide an insight into the forest ecosystem function of coniferous forests through the analysis of the amount of nutrient transfer into the soil through a long-term decomposition process; this information is intended to be used as basic data for preparing counter measures for future climate and ecosystem changes.

Changes of Cold Tolerance and it Mechanisms at Young Microspore Stage caused by Different Pre-growing Conditions in Rice (벼 수잉기내냉성의 전역조건에 따른 변동과 기구)

  • 이선용;박석홍
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.394-406
    • /
    • 1991
  • It was proved that cold tolerance of rice plants at the young microspore stage was affected by water temperature and nitrogen application from the spikelet differentiation stage to the young microspore stage, and this mechanism could be explained in the point of view of pollen developmental physiology. The cold tolerance of rice plants at the young microspore stage was severely affected by water temperature (Previous water temperature) and nitrogen application(Previous nitrogen application) from the spikelet differentiation stage to the spikelet differentiation stage. Although the duration is only 10 days or so from the spikelet differentiation stage to the young microspore stage, these days are very important period to confirm the cold tolerance of rice plants at the young microspore stage. The higher previous water temperature up to $25^{\circ}C$ and the deeper previous water depth up to 10cm caused the more cold tolerance of rice plants. Water irrigation of 10cm before the cretical stage showed lower cool injury than that of water irrigation of 20cm during the critical stage. The preventive effect of cool injury by combined treatment of the deep water irrigation before and during the critical stage was not additive but synergistic. The cold tolerance of rice plants grown in previous heavy nitrogen level was rapidly decreased when nitrogen content of leaf blade at the young microspore stage was excessive over the critical nitrogen level. Nitrogen content of leaf blade at the changing point of cold tolerance was estimated as about 3.5% for Japonica cultivars and about 2.5% for Indica x Japonica cultuvars. It is considered that these critical nitrogen contents of leaf blade can be used as a index of the safe critical nitrogen level for the preventive practices to cool injury. It was summarized that increase of engorged pollens per anther by high previous water temperature resulted from the increase of number of differentiated microspores per anther, otherwise, the increase of engorged pollens by the decrease of previous nitrogen level was caused by the decrease of the number of aborted microspores per anther.

  • PDF

Photocatalysis of Sub-ppm-level Isopropyl Alcohol by Plug-flow Reactor Coated with Nonmetal Elements Irradiated with Visible Light

  • Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.419-425
    • /
    • 2012
  • This work explored the characteristics and the photocatalytic activities of S element-doped $TiO_2$ (S-$TiO_2$) and N element-doped $TiO_2$ (N-$TiO_2$) for the decomposition of gas-phase isopropyl alcohol (IPA) at sub-ppm concentrations, using a plug-flow reactor irradiated by 8-W daylight lamp or visible light-emitting-diodes (LEDs). In addition, the generation yield of acetone during photocatalytic processes for IPA at sub-ppm levels was examined. The surface characteristics of prepared S- and N-$TiO_2$ photocatalysts were analyzed to indicate that they could be effectively activated by visible-light irradiation. Regarding both types of photocatalysts, the cleaning efficiency of IPA increased as the air flow rate (AFR) was decreased. The average cleaning efficiency determined via the S-$TiO_2$ system for the AFR of 2.0 L $min^{-1}$ was 39%, whereas it was close to 100% for the AFR of 0.1 L $min^{-1}$. Regarding the N-$TiO_2$ system, the average cleaning efficiency for the AFR of 2.0 L $min^{-1}$ was above 90%, whereas it was still close to 100% for the AFR of 0.1 L $min^{-1}$. In contrast to the cleaning efficiencies of IPA, both types of photocatalysts revealed a decreasing trend in the generation yields of acetone with decreasing the AFR. Consequently, the N-$TiO_2$ system was preferred for cleaning of sub-ppm IPA to S-$TiO_2$ system and should be operated under low AFR conditions to minimize the acetone generation. In addition, 8-W daylight lamp exhibited higher cleaning efficiency of IPA than for visible LEDs.

Crude Oil-degrading Properties of Psychrotrophic Bacterium Acinetobacter calcoaceticus A1-1 (저온성 세균 Acinetobacter calcoaceticus A1-1의 원유분해 특성)

  • 윤희정;김상진;민경희
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.74-81
    • /
    • 1993
  • To investigate the oil degrading properties of psychrotrophic bacterium Acinetobacter calcoaceticus Al-l the effects of environmental factors on this bacterium were studied. The optimal environmental conditions for cell growth rate and oil-emulsifying activity were as follows; temperature $15^{\circ}C$, pH 7.5, salt concentration 0- 3% and crude oil concentration 0.1%. Additionally the optimal concentration of Nand P source for cell growth rate and oil-emulsifying activity were 0.76 mM and 0.057 mM as $(NH_4)HS0_4$ and $K_2HP0_4$, respectively. Analysis of remnant oil by gas chromatography showed time dependent oil degradation pattern by A. calcoaceticus during cultivation; At lOoe and $15^{circ}$e, most alkane peaks were disappeared and it showed large quantities of crude oil were degraded. But at $25^{circ}$e alkane compounds in the crude oil were partially degraded even after 120 hours incubation.

  • PDF

Experimental and Numerical Study of the Thermal Decomposition of an Epoxy-based Intumescent Coating (실험과 계산을 통한 에폭시 계열 내화도료의 열분해에 관한 연구)

  • Kim, Yangkyun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • This study investigates the characteristics of thermal decomposition of an epoxy-based intumescent paint using thermogravimetric analysis (TGA) and numerical simulation. A mathematical and numerical model is introduced to describe mass loss profiles of the epoxy-based intumescent coating induced by the thermal decomposition process. The decomposition scheme covers a range of complexity by employing simplified 4-step sequential reactions to describe the simultaneous thermal decomposition processes. The reaction rates are expressed by the Arrhenius law, and reaction parameters are optimized to fit the degradation behavior seen during thermogravimetric (TG) experiments. The experimental results show a major 2-step degradation under nitrogen and a 3-step degradation in an air environment. The experiment also shows that oxygen takes part in the stabilization of the intumescent coating between 200 and $500^{\circ}C$. The simulation results show that the proposed model effectively predicts the experimental mass loss as a function of time except for temperatures above $800^{\circ}C$, which were intentionally not included in the model. The maximum error in the simulation was less than 3%.