• Title/Summary/Keyword: 질소물질수지

Search Result 60, Processing Time 0.022 seconds

Study for Clean Energy Farming System by Mass and Energy Balance Analysis in the Controlled Cultivation of Vegetable Crop (Cucumber) (물질 및 에너지 수지 분석을 통한 시설채소(오이)의 청정에너지 농업 시스템 구축을 위한 기초 연구)

  • Shin, Kook-Sik;Kim, Seung-Hwan;Oh, Seong-Yong;Lee, Sang-En;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.280-286
    • /
    • 2012
  • Clean energy farming is the agricultural activity to improve an efficiency of agricultural energy use and to replace fossil fuels. This study was carried out to establish the clean energy farming system in the controlled cultivation of vegetable crop (cucumber) adopting the biogas production facility. In order to design the clean energy farming system, mass and energy balance was analyzed between the controlled cultivation system and the biogas production facility. Net yearly heating energy demands ($E_{YHED}$) of forcing and semi-forcing cultivation types were 48,697 and $13.536Mcal\;10^{-1}$ in the controlled cultivation of vegetable cucumber. To cover these $E_{YHED}$, the pig slurry of 511 and $142m^3\;10a^{-1}$ (biogas volume of 9,482 and $2,636Nm^3\;10a^{-1}$, respectively, as 60% methane content) were needed in forcing and semi-forcing cultivation types. The pig slurry of $511m^3\;10a^{-1}$ caused N 1,788, $P_2O_5$ $511kg\;10a^{-1}$ in the forcing cultivation type, and the pig slurry of $142m^3\;10a^{-1}$ caused N 497, $P_2O_5$ $142kg\;10a^{-1}$ in the semi-forcing cultivation type. The daily heating energy demand ($E_{i,DHED}$) by the time scale analysis showed the minimum $E_{i,DHED}$ of $7.7Mcal\;10a^{-1}\;day^{-1}$, the maximum $E_{i,DHED}$ of $515.1Mcal\;10a^{-1}\;day^{-1}$, and the mean $E_{i,DHED}$ of 310.2 in the forcing cultivation type. And the minimum $E_{i,DHED}$, the maximum $E_{i,DHED}$, and the mean $E_{i,DHED}$ were 5.3, 258.0, and $165.1Mcal\;10a^{-1}\;day^{-1}$ in the semi-forcing cultivation type, respectively. Input scale of biogas production facility designed from the mean $E_{i,DHED}$ were 3.3 and $1.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type. The maximum $E_{i,DHED}$ gave the input scale of 5.4 and $2.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type.

Comparison of Material Flux at the Sediment-Water Interface in Marine Finfish and Abalone Cage Farms, Southern Coast of Korea: In-situ and Laboratory Incubation Examination (남해안 어류 및 전복가두리양식장의 퇴적물-수층 경계면에서의 물질플럭스 비교: 현장배양과 실내배양실험 연구)

  • Park, Jung-Hyun;Cho, Yoon-Sik;Lee, Won-Chan;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Jeong-Bae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.536-544
    • /
    • 2012
  • It is necessary to study the material circulation of coastal ecosystem according to aquacultural activity in order to induce the sustainable production of aquaculture and the fishery environment for the useful use. Hence, it is essential to make an exact assessment for the sedimentation release flux at the sediment-water interface in the aquafarm. Sediment oxygen demand and dissolved inorganic nitrogen release fluxes were compared using in-situ and laboratory incubational examination. Sediment oxygen demands were 116, 34, and $31\;mmol\;O_2\;m^{-2}\;d^{-1}$ (in-situ incubation), 52, 17, and $15\;mmol\;O_2\;m^{-2}\;d^{-1}$ (Core incubation) and dissolved inorganic nitrogen release fluxes were 7.18, 7.98, and $1.78\;mmol\;m^{-2}\;d^{-1}$ (in-situ incubation), 3.33, 3.74, and $1.96\;mmol\;m^{-2}\;d^{-1}$ (Core incubation) at Tongyeong finfish, Yeosu finfish, and Wando abalone cage farms, respectively. Consequently, in-situ incubation results showed two times higher than laboratory examination. We compared the material flux at the sediment-water interface of each farm and the characteristics between two different kinds of material flux examination.

Nitrogen Removal from a mixed Industrial Wastewater using Food-Waste Leachate and Sugar Liquid Waste as External Carbon Sources: Full-Scale Experiment (혼합 산업폐수의 질소제거를 위한 외부 탄소원 투입과 물질수지: 실증실험)

  • Lee, Monghak;Ahn, Johwan;Lee, Junghun;Bae, Wookeun;Shim, Hojae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.663-668
    • /
    • 2012
  • The feasibility of enhancing biological nutrient removal from an industrial wastewater was tested with food waste leachate and sugar liquid waste as external carbon sources. Long term influences of adding external carbon sources were investigated to see how the biological nutrient removal process worked in terms of the removal efficiency. The addition of the external carbons led to a significant improvement in the removal efficiency of nutrients: from 49% to approximately 76% for nitrogen and from 64% to around 80% for phosphorus. Approximately, 20% of the removal nitrogen was synthesized into biomass, while the remaining 80% was denitrified. Though the addition of external carbon sources improved nutrient removal, it also increased the waste sludge production substantially. The optimal observed BOD/TN ratio, based on nitrogen removal and sludge production, was around 4.0 in this study.

Decomposition Characteristics of Non-Degradable Liquid Waste under High Temperature and High Pressure Conditions (고온 고압 조건에서의 난분해성 액상폐기물 분해 특성)

  • Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1572-1578
    • /
    • 2007
  • The specified wastes consist of waste acid, waste alkali, waste oil, waste organic solvent, waste resin, dust, sludge, infectious waste, and others. Among these specified wastes, a great portion is liquid phase wastes. The purpose of this study is to develop the high temperature and high pressure (HTHP) treatment system for decomposition of the liquid phase specified waste (LPSW). For this, we analyzed the physical and chemical properties of the LPSW such as density, proximate analysis, ultimate analysis, heating values, and designed 0.3 ton/day HTHP treatment system. The LPSW tested in this experiment were prepared by adding TCE(trichloroethylene) and toluene to liquid phase waste which was brought into the commercial waste treatment company. The average density of waste oil (25 samples), waste resin (5 samples), and waste solvent (12 samples) was 0.99 g/mL, 0.91 g/mL, and 0.93 g/mL, respectively. And the average lower heating value of waste oil, waste resin, and waste solvent was 8,294 kcal/kg, 5,809 kcal/kg, and 7,462 kcal/kg, respectively. The DRE (Destruction & Removal Efficiency) of TCE and toluene were 99.95% and 99.73% at atmospheric pressure conditions and that were 99.99% and 99.82% at pressurized conditions, respectively. These results showed that TCE/toluene mixtures were properly decomposed over about 99.73% of DRE by the HTHP treatment system and pressurized conditions were more effective to destroy those pollutants than atmospheric pressure conditions. Also these systems could be directly applied to industries which try to treat the liquid phase specified waste within the regulation limit.

  • PDF

Oxygen Mass Balance Analysis in an Intermittently Aerated Wetland Receiving Stormwater from Livestock Farms (축산유역 강우유출수 처리를 위한 간헐 포기식 인공습지에서 산소수지분석)

  • Guerra, Heidi B.;Park, Kisoo;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.488-498
    • /
    • 2016
  • In order to assess the role of aeration in stormwater wetlands, oxygen supply and consumption in a wetland treating runoff from livestock farms were estimated and analyzed. Furthermore, oxygen mass balance was conducted during day time and night time. Internal production by algal photosynthesis dominated the oxygen production particularly in the shallow marsh due to the large amount of algae. Consequently, algal respiration was also the major oxygen depletion element with nitrification and biodegradation estimated as 5.35% and 6.43% of the total oxygen consumption. This excessive portion of oxygen consumption by algae was associated to the highly turbid water caused by the resuspension of sediment particles in the aeration pond, which also affected the subsequent wetland. Moreover, an abundance of oxygen was estimated during the day indicating that oxygen produced by algal activity is sufficient to meet the oxygen demand in the wetland. Thus, supplemental aeration was deemed not necessary at daytime. In contrast, oxygen was greatly depleted at night when algal photosynthesis stopped which induced denitrification. Therefore, it was suggested that supplemental aeration may be operated continuously instead of intermittently to avoid oxygen deficit in the wetland at night or it may be stopped entirely to further enhance denitrification.

Carbon Budget during the Molt Cycle of Macrobrachium nipponense (De Haan) larvae (징거미새우, Macrobrachium nipponense (De Haan) 유생의 탈피주기별 탄소수지)

  • SHIN Yun Kyung;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.237-246
    • /
    • 1995
  • Larvae of the freshwater shrimp, Macrobrachium nipponense were reared in the laboratory at constant condition $(25^{\circ}C,\;7\%o)$, and their feeding rate, oxygen consumption rate, and growth rate were measured in regular intervals of time during larval development. Regression equations describing rates of feeding, growth and respiration as functions of time during individual larval molt cycles were inserted in a simulation model in order to analyse time-dependent patterns of variation as well as in bioenergetic efficiencies. Absolute values for feeding, growth, respiration and assimilation showed clear changes during the molt cycle, The absolute and specific values of respiration (R: R/C) showed small variation during the individual molt cycles. Significance of respiration in relation to growth (G) increased within the carbon budget, respiration rate (R/C) outbalanced growth rate (G/C) in late premolt. When the portion of metabolizable carbon is respired (R/G), metabolic coefficient was < 1 (i.e. R$(K_2)$ decreased concurrently, In cumulative carbon budget, total feeding was $491.54\;{\mu}g$ C/ind., assimilation was $85.3\%$, respiration was $47.7\%$, and growth was $37.6\%$ from hatching to postlarval stage.

  • PDF

Effect of Modified Atmosphere Packaging Gas Composition on Quality Preservation of Korean Rockfish Fillets (조피볼락 필렛의 변형기체포장에서 품질보존에 미치는 기체조성의 영향)

  • Eo Jin Park;Su Chan Kim;Duck Soon An
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • In order to extend shelf life for rockfish fillets by modified atmosphere packaging (MAP), different package atmospheres were compared in the product quality preservation. Firstly, CO2 solubility was measured at 0, 5, 10, and 15℃ to be incorporated into the mathematical model to predict the volume and CO2 concentration of the package at expected storage temperature. The CO2 solubility given in Henry's constant decreased with temperature to be fitted with a linear equation. Then air packaging as control and four MAP conditions of 100 g fillets were prepared and stored for duration of 5 days at 10℃ to compare them in the quality preservation effect. Four MAP conditions employed were CO2(60):O2(30):N2(10), CO2(60):O2(0):N2(40), CO2(30):O2(30):N2(40) andCO2(30):O2(0):N2(70). MAP conditions with high CO2 concentration inhibited total aerobic bacteria, and the conditions containing O2 led to low TVB-N. MAP of CO2(60):O2(30):N2(10) was found to be the best condition for rockfish fillet preservation considering total aerobic bacteria growth and nitrogenous volatiles production.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

The Estimation of N, P mass Balance in Masan Bay using a Material Cycle Model (물질순환 모델을 이용한 마산만의 질소, 인 수지 산정)

  • 김동명;박청길;김종구
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.833-843
    • /
    • 1998
  • It is noted that the red tides and the oxygen-deficient water mass are extensively developed in Masan Bay during summer. The nutrients mass balance was calculated in Masan Bay, using the three-dimensional numerical hydrodynamic model and the material cycle model. The material cycle model was calibrated with the data obtained on the field of the study area in June 1993. The nutrients mass balance calculated by the combination of the residual currents and material cycle model results showed nutrients of surface and middle levels to be transported from the inner part to the outer part of Masan Bay, and nutrients of bottom level to be transported from outer part to inner part of Masan Bay. The uptake rate of DIN in the box A1(surface level of inner part) was found to be 337. 5mg/$m^3$ㆍday, the largest value in all 9 boxes and that of DIP was found to be 18.6mg/$m^3$ㆍday in box A1, and the regeneration rate of DIN was found to be 78.2mg/$m^3$ㆍday in the box A3(bottom level of inner part), and that of DIP was found to be 18.6mg/$m^3$ㆍday in box A1. The regenerations of DIN and DIP in the water column of the entire Bay were found to be 7.66ton/day and 760kg/day, respectively. And the releases of DIN and DIP from the sediments of the entire Bay were found to be 2.86ton/day and 634kg/day, respectively. The regeneration rate was 2.5 times as high as the release rate in DIN, and 1.2 times in DIP. The results of mass balance calculation showed not only the nutrients released from the sediments but the nutrients regenerated in water column to be important in the control and management of water quality in Masan Bay.

  • PDF

Photo-decomposition Characteristics of 2,4,6-Trinitrotoluene in a UV/$H_2O_2$ Process (2,4,6-Trinitrotoluene (TNT)의 광분해 특성)

  • Kwon, Bum-Gun;Choi, Won-Yong;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.775-788
    • /
    • 2010
  • The decomposition of 2,4,6-trinitrotoluene (TNT) and the mass balance of nitrogen (N) species as products were investigated in a UV/H2O2system by varying pH, concentrations of $H_2O_2$, and $O_2$. All experiments were conducted in a semi-batch system employing a 50 mL reaction vessel and a coil-type quartz-tube reactor. In contrast with previous studies employing batch mode, TNT decomposition in the semi-batch mode was proportionally enhanced by increasing $H_2O_2$ concentration to 10 mM (0.034%), indicatingthat an inhibitory effect of excess $H_2O_2$on hydroxyl radical (${\cdot}OH$) can be negligible. N compounds are released as $NO_2^-$ in the early stages of the reaction, but $NO_2^-$ is rapidly oxidized to $NO_3^-$ by means of ${\cdot}OH$. $NH_4^+$ was also detected in this study and showed gradually the increase with increasing reaction time. In this study, $NH_4^+$ production can involve the reduction of nitro group of TNT concurrent with the production of $NO_3^-$. Of the N species originating from TNT decomposition, 12 ~ 72% were inorganic forms (i.e. [$NO_3^-$] + [$NO_2^-$] + [$NH_4^+$]). This result suggests that the large remaining N portions indicate that unidentified N compounds can exist.