• Title/Summary/Keyword: 질산태질소

Search Result 269, Processing Time 0.025 seconds

Sensing NO3-N and K Ions in Hydroponic Solution Using Ion-Selective Membranes (이온선택성 멤브레인을 이용한 양액 내 질산태 질소 및 칼륨 측정)

  • Kim, Won-Kyung;Park, Tu-San;Kim, Young-Joo;Roh, Mi-Young;Cho, Seong-In;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.343-349
    • /
    • 2010
  • Rapid on-site sensing of nitrate-nitrogen and potassium ions in hydroponic solution would increase the efficiency of nutrient use for greenhouse crops cultivated in closed hydroponic systems while reducing the potential for environmental pollution in water and soil. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and the ability to directly measure the analyte. The capabilities of the ISEs for sensing nitrate and potassium in hydroponic solution can be affected by the presence of other ions such as calcium, magnesium, sulfate, sodium, and chloride in the solution itself. This study was conducted to investigate the applicability of two ISEs consisting of TDDA-NPOE and valinomycin-DOS PVC membranes for quantitative determinations of $NO_3$-N and K in hydroponic solution. Nine hydroponic solutions were prepared by diluting highly concentrated paprika hydroponic solution to provide a concentration range of 3 to 400 mg/L for $NO_3$-N and K. Two of the calibration curves relating membrane response and nutrient concentration provided coefficients of determination ($R^2$) > 0.98 and standard errors of calibration (SEC) of < 3.79 mV. The use of the direct potentiometry method, in conjunction with an one-point EMF compensation technique, was feasible for measuring $NO_3$-N and K in paprika hydroponic solution due to almost 1:1 relationships and high coefficients of determination ($R^2$ > 0.97) between the levels of $NO_3$-N and K obtained with the ion-selective electrodes and standard instruments. However, even though there were strong linear relationships ($R^2$ > 0.94) between the $NO_3$-N and K concentrations determined by the Gran's plot-based multiple standard addition method and by standard instruments, hydroponic $NO_3$-N concentrations measured with the ISEs, on average, were about 10% higher than those obtained with the automated analyzer whereas the K ISE predicted about 59% lower K than did the ICP spectrometer, probably due to no compensation for a difference between actual and expected concentrations of standard solutions directly prepared.

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

Effect of SCB Liquid Manure Application in Pear Orchard Managed by Cover Crop System on Tree Growth, Potential Nutrient Recovery and Soil Physicochemical Properties (녹비작물 재배 시 SCB 액비 혼용이 배나무 생육 및 양분 환원 가능량, 토양 물리화학성에 미치는 영향)

  • Lee, Seong-Eun;Park, Jin-Myeon;Choi, Dong-Geun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.779-786
    • /
    • 2012
  • Many farmers have been seeking alternatives to chemical fertilizer for successful organic fruit production. This experiment was carried out to investigate the replaceability of chemical fertilizer by cover crop and slurry composting biofiltration (SCB) liquid manure (LM) application in pear orchard. Three treatments were contained in this experiment; cover crop only and cover crop + LM treatment, and control (chemical fertilizer application). Dry weight and mineral contents of gramineous cover crops were significantly increased in LM-combined treatments than that of leguminous species. Bulk density of soil was decreased in rye + LM and hairy vetch + LM treatments, compared with each cover crop treatment. Soil pH was lowest in fertilizer treatment and soil nitrate content became similar between treatments after rainy season. Available soil phosphate was lower in cover crop and cover crop + LM treatmemts than control, but exchangeable Mg was higher. The mineral content and net assimilation rate of leaves showed no difference between the treatments. As a result, it is suggested that the application of SCB liquid manure in pear orchard managed by cover crops is desirable to maintain the productivity by improving soil physical properties and potential nutrient recovery.

Effect of Wood vinegar on Tomato Seedling Growth and Nutrient Uptake (토마토 유묘생육 및 양분흡수에 관한 목초액의 영향)

  • 김승환;최두희;이상민;남재작;김한명;손석용;송범헌
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.2
    • /
    • pp.103-113
    • /
    • 2003
  • The chemical properties of oak tree wood vinegar and the effect of wood vinegar on the tomato seedling were investigated to apply wood vinegar efficiently to the organic - and natural farming system. On the basis of the results from chemical properties of the oak tree wood vinegar, mineral nutrient contents of wood vinegar was low. Therefore, wood vinegar could not be a suitable nutrient source for the plant growth at 500∼1000 times dilution level. which commonly used in the farming, if only wood vinegar is supplied for the nutrient source for the plant growth. The application of wood vinegar increased root growth up the 500 times dilution level while decreased shoot growth. Furthermore. the anion concentrations such as nitrate and phosphate of the plant were decreased by the application of wood vinegar while cation concentrations such as K. Ca. and Mg were increased. Phenolic compounds of wood vinegar such as chlorogenic acid and ferulic acid enhanced the root growth. Interestingly the application of ferulic acid increased both root and shoot growth at the level of 10$^{-4}$ M concentration. It indicated that the effect of wood vinegar on the production of healthy plant seedling may be due to the beneficial root growth by phenolic compounds such as chlorogenic acid and/or ferulic acid of the wood vinegar. However. the effect of the wood vinegar on the plant growth could be influenced by synergism or antagonism of different phenolic compounds in wood vinegar used. In addition. drench in the soil of wood vinegar may be more beneficial compared to foliar application for the improvement of root activity and plant growth.

  • PDF

Effect of Nitrate Concentration in Culture Solution on the Growth and the Uptake of Inorganic Elements of Tomato Plants(Lycopersicum esculentum Mill) (배양액(培養液)의 질산태질소농도가 토마토(Lycopersicum esculentum Mill)의 생육 및 무기원소(無機元素) 흡수에 미치는 영향)

  • Lee, Kwang-Seek;Yu, Jing-Quan;Matsui, Yoshihisa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 1997
  • This experiment was carried out to investigate the effects of nitrate concentration in culture solution on the growth and the uptake of inorganic elements in Tomato plant in the greenhouse. Tomato plants(cv. TVR-2) were grown with nitrate concentrations 8, 16, 24, 32cmol/l, based on Japan ENSI standard solution. Dry weights of lamina and petiole increased with the nitrate concentration. However, the dry weight of fruit was the highest in the treatment of nitrate concentration of 16cmol/l. The proportion of dry weights of vegitative organ to reproductive organ was the lowest in the treatments of nitrate concentrations of 16cmol/l and it increased with the nitrate concentration. The fruit yield was the highest at the treatment of nitrate concentration of 16cmol/l. With the increase of nitrate level the concentrations of N, $NO_3-N$, Ca and Na increased in lamina and petioles. The concentrations of K, P, S and Cl tended to decline in the nitrate concentration of 16 and 32cmol/l. These results indicate that optimum nitrate concentrations in a tomato grown by hydroponics change with growth stage, and the optimum concentrations for vegitative and reproductive stage were 8 and 16cmol/l, respectively. It also was proved that the nitrate concentrations in the culture solution affected antagonistically the uptake of inorganic anion in tomato : In low nitrate level $Cl^-$ uptake was affected much, while $SO_4{^{2-}}$ and $H_2PO_4{^-}$ uptake were affected in high nitrate level.

  • PDF

Determination of the Optimum Application Rate of Pig Slurry for Red Pepper Cultivation (고추에 대한 돈분액비 시용기준 설정)

  • Kang, Bo-Goo;Kim, Hyun-Ju;Lee, Gyeong-Ja;Park, Seong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.388-395
    • /
    • 2004
  • This study was carried out to determine the application rate of pig slurry for red pepper. Field experiment was designed with non-fertilizer, chemical fertilizer recommended by soil testing (CFRST) and pig slurry treatments. In pig slurry (PS) plots, pig slurry was applied as basal fertilizer with different equivalents to nitrogen of chemical fertilizer plot (60%: PS60, 80%: PS80, 100%: PS100, 120%: PS120) and chemical fertilizer was top-dressed additionally. Soil organic matter contents after 50 day of planting and after experiment in the plots treated with PS were higher than that of CFRST plot, whereas content of $NO_3-N$ of CFRST plot was higher than that of PS plot. Growth of red pepper were lowest in the non-fertilizer plot. Plant lengths of red pepper at 50 day after planting were similar among the different treatments, plant lengths of red pepper of PS100, PS120 and CFRST at 100 day after planting were higher than those of the PS60 and PS80 plots. But Main stem and stem diameter of red pepper were not different among the treatments. Uptake rate of N, P and K by red pepper plant were 27-44, 9-16 and 41-68% for total N, $P_2O_5$ and $K_2O$, respectively. Utilization of applied fertilizer ingredient by red pepper plant were in the order of PS80> PS60> FRST> PS100> PS120. Yield of red pepper tends to increase by 3% in the PS100 compared with the CFRST, but there was not significant difference between PS120 and CFRST. Chemical component of run-off collected from the furrow of the red pepper field was not different among the treatments. Greenhouse gases ($CH_4$ and $N_2O$) emission of non-fertilizer, PS100 and CFRST during the whole red pepper growth period were 4.0, 4.8 and $5.9kg\;CH_4\;ha^{-1}$, and 0.74, 6.68 and $8.38kg\;N_2O\;ha^{-1}$. Emission of $CH_4$ and $N_2O$ in PS100 was higher than those of CFRST by 23% and 26%, respectively. In this connection, to be used the pig slurry for red pepper, it is required that pig slurry must be decomposed for six months or more. Consequently, pig slurry equivalent to nitrogen of basal fertilizer of CFRST with additional top dressing of chemical fertilizer is recommend as an optimum application rate of pig slurry for red pepper.

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF

Macro and Micro Nutrient Contents in Leaves of Greenhouse-grown Cucumber by Growth Stages (시설재배 오이의 생육시기별 엽 중 다량요소와 미량요소 함량)

  • Lee, Ju-Young;Sung, Jwa-Kyung;Lee, Su-Yeon;Jang, Byoung-Choon;Kim, Rog-Young;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.215-220
    • /
    • 2011
  • In order to estimate the inorganic nutrient content in cucumber leaves at respective growth stages under greenhouse conditions, we investigated five cucumber farms practicing a forcing cultivation system with nine-month growth period and another five cucumber farms practicing a semiforcing cultivation system with six-month growth period. The cucumber yield in forcing and semiforcing cultivation systems amounted to 14.8 ton $10a^{-1}$ and 10.7 ton $10a^{-1}$, respectively. Soils between two different cultivation systems showed no significant differences in pH, organic matter contents and exchangeable cation contents during early growth stage, whereas EC, $NO_3$-N and available $P_2O_5$ contents were higher in soils of semiforcing cultivation systems. Suitable soil temperature was well provided by forcing cultivation. The highest NPK contents in leaves were observed in 60~80 days after planting for forcing systems and in 100 days after planting for semiforcing systems. Thereby forcing cultivation systems showed somewhat higher NPK contents. Ca and Mg contents in cucumber leaves did not significantly change during the growth period in forcing systems, while semiforcing systems showed the highest contents of Ca and Mg in 80~100 days after planting. Fe, Mn and Zn contents in leaves also did not significantly change during the growth period, whereas Mn contents were slightly higher in forcing systems due to lower soil pH. B contents in leaves were higher in semiforcing systems because of higher available B contents in soil.

Comparison of Growth Characteristics and Compounds of Ginseng Cultivated by Paddy and Upland Cultivation (논 . 밭재배에 따른 인삼의 생육 및 성분 특성 비교)

  • Lee, Sung-Woo;Kang, Seung-Won;Kim, Do-Yong;Seong, Nak-Sul;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • This study was carried out to investigate the difference of growth characteristics and the content of root chemical components in four years old ginseng by paddy and upland cultivation at farmers' field in Korea. Proportions of silt, clay, liquid phase and porosity were higher in paddy soil than upland soil. The range of liquid phase was $17.5{\sim}19.5%$ in paddy and $7.0{\sim}12.8%$ in upland during growth period. EC and the other contents of OM, $NO_3^-,\;K_2O$, and Mg in paddy soil were higher than those of upland soil, while the contents of $P_2O_5$ and Ca were less than those of upland soil. The levels of chemical components of tested soil exceeded recommended range in EC, $NO_3^-$ and Ca of paddy soil, and in $P_2O_5$ and Ca of upland soil. Stem length, fresh root weight and total dry weight per plant in paddy were greater than those of upland. Root weight in paddy-ginseng showed a great increase on September, while it was not increased in upland because of early defoliation. Net assimilation rate and crop growth rate by paddy and upland cultivation showed distinct differences on May and September, and those of paddy-ginseng were higher than those of upland-ginseng. Yield and ratio of red-colored root showed no significant difference by paddy and upland cultivation, while significant differences were observed in diameter and length of primary root, contents of crude saponin and 50% ethanol extracts of primary root, and water content of root. Hardness of primary root showed no significant difference by paddy and upland cultivation until August, but it showed distinct difference on September, at which the hardness in upland cultivation was drastically decreased.

Studies on the Grassland Development in the Forest VIII. Effect of shading degrees on the quality, digestibility and nitrate nitrogen concentration of main grasses (임간초지 개발에 관한 연구 VIII. 차광정도가 주요목초의 품질, 소화율 및 질산태질소 함량에 미치는 영향)

  • Park, Moon-Soo;Seo, Sung;Han, Young-Choon;Lee, Joung-Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.3
    • /
    • pp.85-91
    • /
    • 1988
  • A field experiment was conducted to determine the effects of shading degrees (0: full sunlight, 25, 50 and 75%) on the proximate components, cell wall constituents (CWC), digestibility, water soluble carbohydrates (WSC) and nitrate nitrogen ($NO_3$-N) concentration of grasses grown in forest. For the test different artificial shading houses were established and pasture species used were orchardgrass, timothy, perennial ryegrass and ladino clover. The experiment was performed at LES in Suwon. 1985. 1. Considering proximate components, CWC and digestibility of grasses, ladino clover showed the best quality, and then perennial ryegrass. 2. The contents of crude protein, crude ash, and digestibility of grasses were increased with shading, regardless of pasture species. As the shading degrees are increased, the contents of crude fiber in orchardgrass, perennial ryegrass and timothy were decreased, while that in ladino clover was increased with shading. 3. Grasses grown in spring showed higher digestibility than those grown in summer season. 4. The content of WSC was the highest in perennial ryegrass, and then ladino clover, orchardgrass, and timothy, in that order. Also WSC was decreased as the shading degrees are increased. 5.The content of $NO_3$-N was the highest in perennial ryegrass, and then orchardgrass, ladino clover and timothy, in that order. Also the $NO_3$-N was significantly increased with higher shading level. In the regression equation between shading degrees and $NO_3$-N ($r^2$=0.90**, TEX>$r^2$=0.95**), shading degree of 43 to 44% was critical level, causing nitrate poisoning to animal. 6 Considering grass quality, dry matter yield and $NO_3$-N, less than 40% of shading degree (over 60% of full sunlight) was desirable for better grassland improvement, management and utilization in the forest.

  • PDF