• Title/Summary/Keyword: 질산염과 인산염의 비

Search Result 51, Processing Time 0.022 seconds

The Distributions of Nutrients, Chlorophyll-a, and Primary Productivity in the South Pacific Ocean (남태평양의 영양염, 엽록소, 일차생산성 분포)

  • Kim, Dong-Yup;Shim, Jung-Hee;Song, Hwan-Seok;Kang, Young-Chul;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • The vertical distributions of temperature, salinity, dissolved oxygen, nutrients, chlorophyll, and primary production were investigated within the top 200m water depth in the south Pacific Ocean in February,2000. The study area ($24^{\circ}-41^{\circ}S,\;81^{\circ}-168^{\circ}W$) can be hydrologically divided into two regions. Upwelling was actively occurring in the eastern region of the $110^{\circ}S$ line, meanwhile it was not active in the western region. Accordingly, chemical properties in the surface waters were different between the two regions; nitrate+nitrite and phosphate concentrations were much higher in the eastern region than in the western region due to the active upwelling, but silicate concentration was higher in the western region. Among the nutrients, the major element influencing primary production was also different between the two regions; silicon would be a major element influencing primary production in the eastern region, but nitrogen may act as a major element for primary production in the western region. Primary production showed similar values in the two regions in spite of the large differences of nutrient concentrations in the surface waters, but the total chlorophyll integrated within the 200 m water depth was almost twice as much as in the western region than that in the eastern legion.

  • PDF

Seawater N/P ratio of the East Sea (동해 해수의 질소:인의 비)

  • LEE, TONGSUP;RHO, TAE-KEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • Nitrogen and phosphorus are the limiting elements for growth of phytoplankton, which is a major primary producer of marine ecosystem. Incidentally the stoichiometry of N/P of ocean waters, measured by the (nitrate + nitrite)/phosphate ratio converges to a constant of 16. This characteristic ratio has been used widely for the understanding the ecosystem dynamics and biogeochemical cycles in the ocean. In the East Sea, several key papers were issued in recent years regarding the climate change and its impact on ecosystem dynamic and biogeochemical cycles using N/P ratio because the East Sea is a "miniature ocean" having her own meridional overturning circulation with the appropriate responding time and excellent accessibility. However, cited N/P values are different by authors that we tried to propose a single representative value by reanalyzing the historical nutrient data. We present N/P of the East Sea as $12.7{\pm}0.1$ for the year 2000. The ratio reveals a remarkable consistency for waters exceeding 300m depth (below the seasonal thermocline). We recommend to use this value in the future studies and hope to minimize confusion for understanding ecosystem response and biogeochemical cycles in relation to future climate change until new N/P value is established from future studies.

Variations in Nutrients & CO2 Uptake Rates and Photosynthetic Characteristics of Saccharina japonica from the South Coast of Korea (다시마(Saccharina japonica)의 생장에 따른 영양염 및 CO2 흡수율과 광합성 특성 변화)

  • Hwang, Jae-Ran;Shim, Jeong-Hee;Kim, Jeong-Bae;Kim, Sook-Yang;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.196-205
    • /
    • 2011
  • To investigate the contribution of macroalgae to biogeochemical nutrients and carbon cycles, we measured the uptake rates of nutrients and $CO_2$ and characteristics of fluorescence of Saccharina japonica (Laminaria japonica Areschoug) using an incubation method in an acrylic chamber. From January to May 2011, S.japonica was sampled at Ilkwang, one of well-known macroalgae culture sites around Korea and ranged 46~288 cm long and 4.8~22.0 cm wide of whole thallus. The production rate of dissolved oxygen by S. japonica (n=25) was about $6.9{\pm}5.8{\mu}mol\;g^{-1}$ fresh weight(FW) $h^{-1}$. The uptake rate of total dissolved inorganic carbon ($TCO_2$), calculated by total alkalinity and pH, was $8.9{\pm}7.9{\mu}mol\;g^{-1}\;FW\;h^{-1}$. Mean nutrients uptake were $175.6{\pm}161.1\;nmol\;N\;g^{-1}\;FW\;h^{-1}$ and $12.7{\pm}10.1\;nmol\;P\;g^{-1}\;FW\;h^{-1}$. There were logarithmic relationships between thallus length and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (<100-150 cm) were much more efficient at nutrients and $CO_2$ uptake than old specimens > 150 cm. There was a positive linear correlation ($r^2$=9.4) existed between the dissolved oxygen production rate and the $TCO_2$ uptake rate, suggesting that these two factors may serve as good indicators of S. japonica photosynthesis. There was also positive linear relationship between maximal quantum yield ($F_v/F_m$) and production/uptake rates of dissolved oxygen, $TCO_2$ and phosphate, suggested that $F_v/F_m$ could be used as a good indicator of photosynthetic ability and $TCO_2$ consumption of macroalgae. Maximum relative electron transport rate ($rETR_{max}$) of S. japonica increased as thallus grew and was high in distal part of thallus which may be resulted from the increase of photosynthetic cell density per area. The annual $TCO_2$ uptake by S. japonica in Gijang area was estimated about $1.0\sim1.7{\times}10^3C$ ton, which was about 0.02-0.03% of carbon dioxide emission in Busan City. Thus, more research should be focused on macroalgae-based biogeochemical cycles to evaluate the roles and contributions of macroalgae to the global carbon cycle.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea 1. Relationships between Water Mass and Nutrient Distribution Pattern in Autumn (동해 극전선역의 영양염류 순환과정 1. 추계 수괴와 영양염 분포와의 관계)

  • Moon Chang-Ho;YANG Han-Soeb;LEE Kwang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.503-526
    • /
    • 1996
  • A synoptic survery of chemical characteristics in the last Sea of Korea was carried out at the 11 stations near Ullungdo in November, 1994 on board R/V Tam-Yang. On the basis of the vortical distribution patterns of temperature, salinity and dissolved oxygen, water masses in the study area are divided into five groups; 1) Tsushima Surface Water (TSW), 2) Tsushima Middle Water (TMW), 3) East Sea Intermediate Water (ESIW), 4) last Sea Proper Water (ESPW), 5) Mixed Water (MW). In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly near the thermocline. There was a slight decrease in the ESIW and the concentrations were constant with the depth below 300m except dissolved silicate which still increased with depth. Relatively high value of Si/P ratio (25.2) in ESPW, whick is the oldest water mass, suggests that Si is regenerating more slowly compared to other nutrients. The relatively high value of N/P ratio (18.6) in the surface layer might be related to high vertical eddy diffusivity $(K_z)$ of $1.19\;cm^{2}/sec$ and high nitrate upward flux of $103.7\;{\mu}g-at/m^{2}/hr$, compared to the values reported in other areas. Apparent Oxygen Utilization (AOU) was very low in the surface layer and increased in the TMW, but there was a slight decrease in the ESIW. The highest value of AOU occurred in the ESPW. The slpoe of P/AOU was 0.50. The study on the relationship between water masses and nutrient distribution patterns is important in understanding the regeneration processes of nutrients in the polar region of the last Sea.

  • PDF

Effect of additives of non aqueous solution on the elelctrolytic polishing behaviors of austenitc stainless steel 316 (비수용성용액을 이용한 SUS316 전해연마시 첨가제 영향 고찰)

  • Kim, Seong-Wan;Kim, Gyeong-Tae;Lee, Jong-Seok;Kim, Hak-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.303-304
    • /
    • 2012
  • 공업적으로 널리 사용되는 내식강의 전해연마는 주로 고농도의 인산염 전해액 기반에 황산과 질산 첨가된 용액에서 $70^{\circ}C$ 이상의 고온에서 행해지다 보니 폐액 처리와 작업 환경이 좋지 않아 기피 기술로 인식 되어 있다. 본 연구에서는 환경 친화적인 상온 공정을 개발 하고자 에틸렌 글리콜 용액에 여러 가지 첨가제를 첨가하여 그 효과를 살펴보고 최적 조성과 공정 조건을 확립 하고자 하였다. 틸렌 글리콜에 물과 질산 암모니움을 첨가하여 점도와 pH, 전류 전압 특성을 구하고 여기에 첨가제인 설파메이트와 암모니움 클로라이드 첨가량을 정하고 각각의 효과를 확인 하였다. 이러한 결과를 바탕으로 SUS 316 재질에 대한 최적 연마조건을 설정하기 위해 조도 변화, 광택도 및 표면 조직 변화와 전해연마기구를 비교 검토하였다.

  • PDF

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF

Assessment of Environmentally Sound Function on the Increasing of Soil Fertility by Korean Organic Farming (한국 토착유기농업의 토양비옥도 증진책에 대한 환경보전적 기능 평가)

  • Sohn, Sang-Mok;Han, Do-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.193-204
    • /
    • 2000
  • In order to get some basic data on environmental friendly function by Korean organic farming, the chemical characteristics of soil were determined on 100 farm cultivating site in Paldang watershed area of Great Seoul. The EC and content of $NO_3-N$ and Av. $P_2O_5$ in topsoil(0~30cm) showed $2.30dS\;m^{-1}$, $82mg\;kg^{-1}$, $918mg\;kg^{-1}$ in the soil cultivated chinese cabbage. $2.29dS\;m^{-1}$, $86mg\;kg^{-1}$, $954mg\;kg^{-1}$ in the soil of lettuce, $1.83dS\;m^{-1}$, $66mg\;kg^{-1}$, $1114mg\;kg^{-1}$ in the soil of crown daisy. These salt accumulation(EC) and the high concentration of mineral content in topsoil such as nitrate and phosphate showed the soils of organic farming were contaminated by practice of organic farming for the maintenance strategy of soil fertility. The $NO_3-N$ and Av. $P_2O_5$ in the subsoil(30~60cm) showed $75mg\;kg^{-1}$ and $641mg\;kg^{-1}$, $72mg\;kg^{-1}$ and $466mg\;kg^{-1}$, $42mg\;kg^{-1}$ and $873mg\;kg^{-1}$ in soil cultivated chinese cabbage, lettuce and crown daisy respectively. It indicates eventually the high concentration of nitrate and phosphate in topsoil caused penetration to subsoil, and the high concentration of mineral contents in subsoil indicate the potential risk of leaching of ground water by Korean organic farming. The positive correlation at 1% between EC and $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N show the salt accumulation in the both soil depth of Korean organic farming were caused by minerals such as $NO_3-N$, $K_2O$, T-C, $P_2O_5$ and T-N by overuse of organic fertilizer.

  • PDF

The Change in Patterns and Conditions of Algal Blooms Resulting from Construction of Weirs in the Youngsan River: Long-term Data Analysis (보 건설에 따른 영산강의 조류 발생 및 환경 변화: 수질측정망 장기 자료 분석)

  • Shin, Yongsik;Yu, Haengsun;Lee, Hakyoung;Lee, Dahye;Park, Gunwoo
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.238-252
    • /
    • 2015
  • The effect of weir construction (2009~2011) was investigated on algal bloom dynamics and surrounding conditions in the Youngsan River by analyzing the long-term (2001~2014) data provided by the Water Information System, Ministry of Environment. The data include chlorophyll a and water properties such as total suspended solids (TSS), ammonium ($NH_4{^+}$), nitrate ($NO_3{^-}$), orthophosphate ($PO{_4}^{3-}$), total nitrogen (TN), total phosphorus (TP) and DIN/DIP molar ratio collected from 12 stations along the channel of the river. Temporal variations were examined using data collected monthly from 2001~2014 and Box-Whisker plot was used to examine the difference in algal bloom dynamics between before (2006~2008) and after (2012~2014) the weir construction. Pearson's correlation analysis was also used to analyze the correlation of parameters. The results showed that TSS affecting water turbidity increased during the construction but decreased especially at the stations located in the upper and middle regions of the river after the construction. Ammonium concentrations increased whereas the concentrations of other nutrients decreased after the construction inducing an increase in N:P molar ratio. Chlorophyll a decreased suddenly during the construction but increased clearly after the construction at the stations where TSS decreased. This indicates that algal blooms can develop in the Youngsan River due to a decrease in turbidity that increases light penetration in water column although the concentrations of nutrients such as orthophosphate were reduced after the weir construction.

Oxygen-18 and Nutrients in the Surface Waters of the Bransfield Strait, Antarctica during Austral Summer 1990/91 (1990/91년 남극하계 브렌스필드 해협 표층해수의 $\delta$/SUP 18/O와 영양염 분포)

  • KANG, DONG-JIN;CHUNG, CHANG SOO;COOPER, LEE W.;KANG, CHEONG YOON;KIM, YEA DONG;HONG, GI HOON
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.250-258
    • /
    • 1992
  • The oxygen isotope composition of surface waters in the Bransfield Strait was determined as one extra state variable in order to characterize water masses in the region, since salinity is significantly modified due to the freezing and ice-melting in the polar region. The salinity, temperature, and $\delta$/SUP 18/O values vary from 34.0 to 34.5$\textperthousand$, -.05 to 2.1$^{\circ}C$ and -0.50 t -0.26$\textperthousand$, respectively. The combined effects of evaporation, precipitation, freezing, ice-melting are reflected in the widely scattered data. Although it is small, the distribution of $\delta$/SUP 18/O of the Bransfield Strait is strongly affected by the freezing-ice melting rather than the evaporation-precipitation. The ice melted fresh water which has higher temperature, depleted salinity and nutrients may be injected to the Bransfield Strait from the north. The concentrations of nutrients are decreasing gradually from the north to the south. The waters were characterized by two groups of higher (about 19.4) and lower N/P ratio (about 16.7). The lower N/P ratio is found in the northern part where ice-melted fresh water is injected. and the higher N/P ratio is found in the southern part of the Bransfield Strait. Although more precise work is needed, the deference of N/P ratio can be an evidence of the ice melted water injection to the Bransfield Strait. Chlorophyll a concentrations, in general, increase from northwest (Waddell Sea) to the southeast (Smith and Hosseason Islands). Probably the injection of nutrient depleted fresh water from the ice melting reduce the chlorophyll a concentration.

  • PDF

Behavior of Nutrients along the Salinity Gradients in the Seomjin River Estuary (섬진강 하구역에서 염분경사에 따른 영양염의 거동)

  • KWON Kee-Young;MOON Chang-Ho;YANG Han-Seob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.199-206
    • /
    • 2001
  • Behavior of nutrients along the salinity gradients in the Seomjin River estuary was investigated in March July, September and November, 1999. Sampling sites were set based on the surface salinity during each cruise rather than geographic locations. The results suggest that source of nitrate and silicate was the Seomjin River discharge, while that of nitrite and phosphate was waste disposal from the Gwangynng Bay near the mouth of Seomjin River estuary. Ammonia was supplied inside the estuary at the region about $6\~8$ km far from Nancho Island. Strong removal behavior of some nutrient such as ammonia, phosphate and silicate was observed at $5\~15$ psu salinity area in November, where high concentrations of $chlorophyll\;a\;(>8{\mu}g/L$) occurred. High N : P ratios and entirely removal of phosphate at chlorophyll a peak region suggest that phosphate is the limiting factor for phytoplankton growth. Relatively high ratios of Rb to Ra (Rb: Fluorescence before acidification, Ra: Fluorescence after acidification) at $5\~15$ psu salinity region in November indicate that phytoplankton were in good physiological condition.

  • PDF