• Title/Summary/Keyword: 질산성 질소 환원

Search Result 67, Processing Time 0.023 seconds

Biological Perchlorate Reduction in Municipal Sewage (도시하수에서 생물학적 퍼클로레이트의 환원)

  • Choi, Hyeoksun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.675-680
    • /
    • 2013
  • This research was done to evaluate the potential for destruction of perchlorate in municipal sewage. Laboratory experiments were conducted in flasks containing 3 liters of raw sewage. Sewage was mixed with defined amount of perchlorate and various additives. Perchlorate reduction in sewage did occur, but was quite variable, ranging from 0 to 72% over 72 hour. Addition of even a small amount of perchlorate acclimated biomass (167 mg/L SS) significantly reduced the lag and resulted in complete perchlorate removal. Perchlorate reduction in sewage-brine mixtures was inhibited when the dissolved oxygen level was greater than 2 mg/L, and when the mixture salinity was relatively high (conductivity = 14 mS with equivalent TDS = 8 g/L). When nitrate ($NO_3{^-}$) was present with perchlorate in the laboratory flask tests of sewage-brine mixtures, nitrate reduction proceeded first. A significant amount of nitrite ($NO_2{^-}$) accumulated in the sewage-brine mixtures, accounting for about 66% of initial nitrate nitrogen ($NO_3$-N).

Relationship Between Soil Properties and Tip Burn of Chinese Chive Cultivated in Plastic Film House (시설재배 부추 잎끝마름증 발생에 영향을 미치는 토양특성)

  • Seo, Young-Jin;Choi, Young-Seub;Park, Jun-Hong;Kweon, Tae-Young;Choi, Seong-Yong;Kim, Chan-Yong;Kim, Jong-Su;Park, So-Deuk;Park, Man;Jeon, Sang-Ho;Jang, Yong-Sun;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.380-386
    • /
    • 2011
  • Tip burn has been reported as one of the most serious physiological disorder in Chinese chives (Allium tuberosum Rottl.) cultivated in plastic film house. In this study, a physiography and chemical properties of 132 plastic film house soils were investigated to elucidate factors affecting tip burn symptom. Also influence of soil properties on tip burn was statistically determined by path analysis and association analysis including a chi-square test or logistics analysis. Probability distribution of inorganic aqueous species, such as ammonia (g) was calculated using MINTEQ program. Soil order and chemical properties, especially pH, exchangeable calcium and inorganic nitrogen, showed a significant relationship with tip burn of Chinese chives. Tip burn symptoms occur mainly in an alkaline soil classified as Alfisols. Result of linear regression and path analysis exhibited that formation of ammonia (g) from soil solution depend upon soil pH and were associated with ammonium resulting from soil organic matter or nitrate. These results indicate that tip burn symptom of Chinese chives is directly affected by ammonia gas originated from alkaline soil condition.

Characteristics of Groundwater Quality in a Riverbank Filtration Area (강변여과수 부지 내 충적층 지하수의 수질특성과 변화)

  • Hyun Seung-Gyu;Woo Nam-C.;Shin Woo-Sik;Hamm Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.151-162
    • /
    • 2006
  • Characteristics and changes of groundwater qualify were investigated in a riverbank filtration area at Daesan-myeon, Changwon City, Korea. The total dissolved solids (TDS) in groundwater samples collected in October were much less than that in March, indicating the mixing with recharged water from precipitation, as well as the changes of dissolved oxygen profiles at monitoring wells from March to October. Redox processes at depths appeared to trigger Fe and Mn contamination of groundwater in riverbank deposits. Amorphous oxyhydroxides md carbonate minerals such as $MnCO_3$ were probably the reactive phases for dissolved Fe and Mn, respectively. Groundwater contamination by nitrate-nitrogen $(NO_3-N)$ was controlled by the redox processes and subsequent denitrification at the sampled depths. Distribution of $NO_3-N$ concentrations at monitoring wells suggested that the nitrate contaminants were originated from agricultural facilities on the riverbank deposits. Some of monitoring wells, DS-2, D-2, DS-3, SJ-1, and SJ-3, were only partially penetrated into the sand/gravel aquifer, and subsequently, could not fully function to detect the water quality changes for the pumping wells. Proper measures, with regulating agricultural activities in the riverbank deposits, should be carried out to prevent groundwater contamination of the riverbank filtration area.

Variation in Nitrate Contamination of Shallow Groundwater in a Farmland in Gyeonggi-do, Korea (경기도 지역 농경지의 천부 지하수 내 질산염 오염특성과 변화)

  • Lee, Eun-Jae;Woo, Nam-Chil;Lee, Byung-Sun;Kim, Yang-Bin
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.393-403
    • /
    • 2008
  • Hydrogeochemistry of groundwater was studied in order to identify the influence of cow manure, distributed to a farmland as organic fertilizer, on nitrate concentrations in shallow groundwater and its spatio-temporal variations. From monitoring wells, water levels were measured using automatic data loggers, and water samples collected and analyzed in Feb., April, June and Oct. 2007. The average electric conductivity and concentration of nitrate in the groundwater show the highest levels in April and decline in subsequent sampling times. Decreases in dissolved oxygen(DO) and nitrate concentrations from April to Oct. and corresponding increases in $HCO_3$ concentrations indicate denitrification processes by microorganisms. Spatial variation of nitrate concentration appeared to be affected by the redox conditions of groundwater controlled by geochemical reactions of Mn, Fe and DOC contents.

Relationship between Cucumber Yield and Nitrate Concentration in Plastic Film House with Ryegrass Application (호밀이 투입된 오이 시설재배지에서 수량과 토양용액의 질산태질소과의 관계)

  • Lee, Chang Hoon;Lim, Tae Jun;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.943-948
    • /
    • 2012
  • This study was conducted to estimate the effect of nitrogen reduction by applying ryegrass and to determine the relationship between yield and nitrate concentration of soil solution for cucumber cultivation in plastic film house. Nitrogen levels with recovery of ryegrass ($42.3Mg\;ha^{-1}$) was 0, 50, 75, 100 % of 199 kg N $ha^{-1}$ as N recommendation by determining soil EC value. Yield and nitrate concentration in soil solution was investigated during cucumber cultivation. Yields of N treatments applied ryegrass showed 64.3, 70.9, 70.3, and $76.5Mg\;ha^{-1}$, respectively, it could reduce about 25-50% of nitrogen application compared to yield ($68Mg\;ha^{-1}$) of NPK plot applied 199 kg N $ha^{-1}$. Nitrate concentration in soil solution was average 26.0, 30.1, 41.4, $58.5mg\;L^{-1}$ during cucumber cultivation and was related between yield and average nitrate concentration of soil solution following as; $Y=49.3+0.63X+0.0034X^2$ ($R^2=0.778^{**}$). However, it needs to conduct extra-experiment due to high variation of nitrate concentration during cultivation periods.

굴비의 가공 및 저장중의 N-Nitrosamine에 관한 연구 1. 굴비의 가공 및 저장중 질산염, 아질산염 및 아민류의 변화

  • SUNG Nak Ju;YANG Han Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.344-352
    • /
    • 1984
  • In recent years, the occurrence of nitrosamine, which are produced by the interaction of nitrite and secondary amine, in foods has been the subject of considerable interest and controversy. In this experiment, changes in nitrate, nitrite, TMAO, TMA and DMA nitrogen of salted and dried corvenia, which were incorporated with sodium benzoate, ascorbic acid, cysteine and tetracycline in salt, during processing and storage were analyzed. Levels of nitrate nitrogen was decreased while those of nitrite was increased in salted and dried products during processing and storage, but sample was incorporated with ascorbic acid, cysteine and sodium benzoate in salt inhibited the reduction of nitrate to nitrite while with tetracycline in salt accelerated this reduction in salted and dried products during processing and storage. Contents of TMAO nitrogen in all salted and dried products as well as in the control was decreased, but was increased during storage, while TMA nitrogen was increased in salted and dried products during processing and storage. Contents of DMA nitrogen was increased in all salted and dried products during processing and storage, DMA contents of raw in the control was increased to more than 11.6 times after storage for 30 days, but sample was incorporated with ascorbic acid, cysteine and sodium benzoate in salt inhibited the production of DMA nitrogen while with tetracycline in salt accelerated in salted and dried products during processing and storage.

  • PDF

Geochemical Characteristics and Nitrates Contamination of Shallow Groundwater in the Ogcheon Area (옥천지역 천부지하수의 지구화학적 특성 및 질산염 오염 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • The geochemical and nitrogen isotopic analyses for shallow groundwater of Ogcheon area were carried out to characterize the geochemical characteristics of the groundwater and to identify the source of nitrate. Groundwater shows a neutral pH to weakly alkalic condition with pH values ranging from 6.9 to 8.4. The average of EC, Eh and DO is $344.2\;{\mu}s/cm$, 195 mV, 4 mg/L, respectively. According to piper diagram, chemical composition of groundwater is dominantly characterized by Ca-$HCO_3$ type. On the other hand, groundwater type in the study area include Ca-Cl+$NO_3$ type that were highly influenced by agricultural activities. $NO_3$-N concentration of the collected samples(n=45) range from 12.4 to 34.2 mg/l. These data show that the $NO_3$-N concentration exceeds Korea Drinking Water Standard (10 mg/l). The $\delta^{15}N-NO_3$ values range from $2.7^{\circ}/_{\circ\circ}$ to $18.8^{\circ}/_{\circ\circ}$. The enrichments of heavy isotope in the groundwater indicate that major origin of nitrate pollution were associated with animal and human waste. Also the denitrification may have partly contributed as one of the sources of nitrogen.

Evaluation of nanoscale zero valent iron filled column for nitrate reduction (영가철 나노입자가 충진된 컬럼을 이용한 질산성 질소 환원 성능 평가)

  • Hong, Youngpyoe;Seo, Younggyo;Kim, Hyowon;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • In this study, we compared the MZVI (Microscale Zero-Valent Iron) and NZVI (Nanoscale Zero-Valent Iron) for reactivity and mobility in a column to reduce nitrate, which is a major pollutant in Korea, and investigated the effect of operational parameters on the NZVI filled column. For the comparison of MZVI and NZVI, samples were collected for 990 minutes using fractionator in the similar operation conditions (MZVI 10g, NZVI 2g). The nitrate reduction efficiency of NZVI was about 5 times higher than that of MZVI, which was about 7.45% and 38.75% when using MZVI and NZVI, respectively. In the mobility experiment, the MZVI descended due to gravity while NZVI moved up with water flow due to its small size. Furthermore, the optimum condition of NZVI filled column was determined by changing the flow rate and pH. The amount of Fe ions was increased as the pH of the nitrate solution was lowered, and the nitrate removal rate was similar due to the higher yield of hydroxyl groups. The removal rate of nitrate nitrogen was stable while flow rate was increased from 0.5 mL/min to 2.0 mL/min (empty bed contact time: 2.26 min to 0.57 min). NZVI has a high reduction rate of nitrate, but it also has a high mobility, so both of reactivity and mobility need to be considered when NZVI is applied for drinking water treatment.

Reduction of Nitrate using Nanoscale Zero-Valent Iron Supported on the Ion-Exchange Resin (이온교환 능력을 가진 지지체에 부착된 나노 영가철을 이용한 질산성 질소의 환원과 부산물 제거)

  • Park, Heesu;Park, Yong-Min;Jo, Yun-Seong;Oh, Soo-Kyeong;Kang, Sang-Yoon;Yoo, Kyoung-Min;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.679-687
    • /
    • 2007
  • Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.

Reduction of Nitrate-nigrogen by Zero-valent Iron Adhered in Mesoporous Silicas (메조기공 실리카에 부착된 영가철을 이용한 질산성 질소의 환원)

  • Yeon, Kyeong-Ho;Lee, Seunghak;Lee, Kwanyong;Park, Yong-Min;Kang, Sang-Yoon;Lee, Jae-Won;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.139-147
    • /
    • 2007
  • For environmental remediation of a contaminated groundwater plume, the use of zero-valent metal represents one of the latest innovative technologies. In this study, the effects of denitrification by zero-valent iron adsorbed in mesoporous silicas have been studied for groundwater contaminant degradation. The mesoporous silica was functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands and the zero-valent iron precipitated in the mesopore of granular silica was made by $FeCl_2$ and $NaBH_4$. Hydrogen was exchanged with $Fe^{2+}$ ions in the granular silicas. And then the ions were reduced by sodium borohydride in the mesoporous silicas. The surface area of the silica determined via the BET method ranged from 858 to $1275m^2/g$. The reductive reaction of nitrate-nitrogen indicated that the degradation of nitrate-nitrogen appeared to be pseudo first-order with the observed reaction rate constant kobs ($0.1619h^{-1}$) and to be directly proportional to the specific surface area. Therefore, the mesoporous silica with nano zero-valent iron proposed as a novel treatment strategy for contaminated groundwater was successfully implemented herein for the removal of nitrate-nitrogen.