Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.05a
/
pp.93-96
/
2011
본 논문에서는 개선된 FCM 알고리즘을 적용하여 통계청에서 제공하는 한국 표준 질병 사인 분류표(K.C.D)를 기초로 질병을 분류한 후, 질병을 도출하고 애매한 증상의 차이의 정도를 퍼지 추론기법을 사용하여 정확한 질병 상세를 도출할 수 있는 한방 질병 분류 시스템을 제시한다. 기존의 FCM 알고리즘은 입력 벡터들과 각 군집 중심과의 거리를 이용하여 측정된 유사도에 기초한 목적 함수의 최적화 방식을 사용한다. 하지만 측정된 패턴과 군집 공간상의 패턴들의 분포에 따라 바람직하지 못한 군집화 결과를 보일 수 있다. 따라서 본 논문에서는 군집들의 대칭성 측도에 퍼지 이론을 적용하여 기존의 FCM 알고리즘으로 군집화 한 결과를 재 군집화 하여 군집화의 정확성을 개선시킨 후, 증상의 차이를 구분하기 위해서 애매한 증상의 정도를 퍼지 추론 방법을 적용하여 정확한 질병 상세를 도출할 수 있는 방법을 제시한다. 본 논문에서는 개선된 FCM 알고리즘을 적용하여 질병을 분류한 후, 퍼지 제어 기법으로 질병을 추출함으로써 기존의 한방 자가진단 시스템 보다 정확하게 질병을 도출한 것을 확인하였다.
Early detection and classification of crop diseases play significant role to help farmers to reduce disease spread and to increase agricultural productivity. Recently, many researchers have used deep learning techniques like convolutional neural network (CNN) classifier for crop disease inspection with dataset of crop leaf images (e.g., PlantVillage dataset). These researches present over 90% of classification accuracy for crop diseases, but they have ability to detect only the pre-trained diseases. This paper proposes an efficient disease inspection CNN model for new crops not used in the pre-trained model. First, we present a benchmark crop disease classifier (CDC) for the crops in PlantVillage dataset using VGG16. Then we build a modified crop disease classifier (mCDC) to inspect diseases for untrained crops. The performance evaluation results show that the proposed model outperforms the benchmark classifier.
Geunyeong Jeong;Joosang Lee;Juoh Sun;Seokwon, Jeong;Hyunjin Shin;Harksoo Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.59-64
/
2022
한국표준질병사인분류(KCD)는 사람의 질병과 사망 원인을 유사성에 따라 체계적으로 유형화한 분류체계이다. KCD는 계층적 분류체계로 구성되어 있어 분류마다 연관성이 존재하지만, 일반적인 텍스트 분류 모델은 각각의 분류를 독립적으로 예측하기 때문에 계층적 정보를 반영하는 데 한계가 있다. 본 논문은 계층적 분류체계를 적용한 KCD 예측 모델을 제안한다. 제안 방법의 효과를 입증하기 위해 비교 실험을 진행한 결과 F1-score 기준 최대 0.5%p의 성능 향상을 확인할 수 있었다. 특히 비교 모델이 잘 예측하지 못했던 저빈도의 KCD에 대해서 제안 모델은 F1-score 기준 최대 1.1%p의 성능이 향상되었다.
Jo, Seung-Gun;Jeon, Hyun-Jin;No, Hyun-Chan;Shin, Sang-Ho;Kim, Kwang-Baek
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.189-192
/
2010
본 논문에서는 개선된 Fuzzy ART 알고리즘을 이용하여 한의학을 기반으로 증상에 대한 질병을 진단하고 민간요법을 제시하는 한방 자가 검진 시스템을 제안한다. 제안된 방법은 신체 부위를 전신, 머리, 배, 다리 등 17부위로 분류하여 사용자가 증상을 선택하도록 제시하고, 사용자가 선택한 증상과 질병에 포함된 증상 그리고 결과로 도출될 질병간의 선택증상 비율에 대한 우선순위를 개선된 Fuzzy ART 알고리즘에 적용하여 증상을 분류한 후, 퍼지 추론 규칙을 적용하여 질병을 도출한다. 도출된 질병과 그 질병에 대한 원인 및 민간요법을 결과로 제시한다. 데이터베이스에 구축되어 있는 질병 데이터는 통계청에서 정리하여 배포한 한국표준질병 사인분류(K.C.D)를 토대로 표준 질병 정보를 얻어 각 질병의 증상과 원인, 민간요법을 정리한 후, 마지막으로 한의학 전문의의 검증을 거쳐 데이터베이스를 구축하였다. 제안된 한방 자가 검진 시스템에 대한 한의학 전문의의 분석 및 검증 결과, 본 시스템의 증상에 대한 질병 도출이 높은 정확도를 보임을 확인하였다.
KOICD(질병분류 정보센터), 보건의료정보표준, 질병분류기호 모두 국내에서 권위 있는 질병분류 정보 검색 가능 홈페이지를 가지고 있다. 그러나 국내에서 가장 많이 이용되는 KCD 와, 국제적으로 사용되는 SNOMED CT 의 검색결과가 동시에 나오는 사이트는 아직 존재하지 않는다. 이에 의료진과 환자, 보험사의 편의를 모두 고려하여 KCD 와 SNOMED CT 가 동시에 출력되는 검색사이트를 제작하였다.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1331-1336
/
2023
In text-based fish disease classification using machine learning, there is a problem that the input parameters of the machine learning model are too many, but due to performance problems, the input parameters cannot be arbitrarily reduced. This paper proposes a method of optimizing input parameters specialized for Paralichthys olivaceus disease classification using SHAP analysis techniques to solve this problem,. The proposed method includes data preprocessing of disease information extracted from the halibut disease questionnaire by applying the SHAP analysis technique and evaluating a machine learning model using AutoML. Through this, the performance of the input parameters of AutoML is evaluated and the optimal input parameter combination is derived. In this study, the proposed method is expected to be able to maintain the existing performance while reducing the number of input parameters required, which will contribute to enhancing the efficiency and practicality of text-based Paralichthys olivaceus disease classification.
소, 돼지, 양, 염소, 사슴 등 발굽이 둘로 갈라진 동물인 우제류에 감염되는 질병으로 전염성이 매우 강하며 입술, 혀, 잇몸, 코, 발굽 사이 등에 수포가 생기며 체온이 급격히 상승되고 식욕이 저하되어 심하게 앓거나 죽게 되는 질병으로 국제수역사무국(OIE)에서 전파력이 빠르고 국제교역상 경제피해가 매우 큰 질병인 A급 질병으로 분류하며 우리나라 제1종 가축전염병으로 지정되어 있다.
The World Health Organization (WHO) announced the 11th International Classification System (ICD-11), which classifies game addiction as a disease in 2018. Sin stocks are defined as the companies that have negative addictive properties and are taxed on social costs. If a game disorder is listed in the disease classification system in Korea, it is highly likely that Korean game companies may be considered as sin stocks that causes negative addictive properties and social costs such as the game addiction and the game addiction tax. This suggests that game companies could be newly included in the scope of sin stocks in Korea. In this study, we examine the effect of the inclusion of game companies in the scope of sin stocks on the job preferences of game companies. We found that there is a high level of opposition to the opinion of the listing sin stocks of game companies, and a high degree of addiction and gambling was suggested as the cause of the game companies being classified as sin stocks. We also found that firm value and job preference would be decrease if a game company was classified as sin stocks. The study is meaningful in that it suggests that game companies can be perceived negatively as sin stocks due to the disease code of game disorder, which has recently emerged as a social issue. Also, this study will contribute to the academia and market participants by reporting statistically the effect of the classification of sin stocks in game companies on job preferences for game companies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.