• Title/Summary/Keyword: 질문-답변 커뮤니티

Search Result 16, Processing Time 0.022 seconds

Modified Na$\ddot{i}$ve Bayes Classifier for Categorizing Questions in Question-Answering Community (확장된 나이브 베이즈 분류기를 활용한 질문-답변 커뮤니티의 질문 분류)

  • Yeon, Jong-Heum;Shim, Jun-Ho;Lee, Sang-Goo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.95-99
    • /
    • 2010
  • Social media refers to the content, which are created by users, such as blogs, social networks, and wikis. Recently, question-answering (QA) communities, in which users share information by questions and answers, are regarded as a kind of social media. Thus, QA communities have become a huge source of information for the past decade. However, it is hard for users to search the exact question-answer that is exactly matched with their needs as the number of question-answers increases in QA communities. This paper proposes an approach for classifying a question into three categories (information, opinion, and suggestion) according to the purpose of the question for more accurate information retrieval. Specifically, our approach is based on modified Na$\ddot{i}$ve Bayes classifier which uses structural characteristics of QA documents to improve the classification accuracy. Through our experiments, we achieved about 71.2% in classification accuracy.

Community based real time Q&A System (커뮤니티 기반의 실시간 질의응답 시스템)

  • Yoon, WonBeom;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.123-125
    • /
    • 2011
  • 본 논문은 스마트 디바이스와 소셜네트워크의 커뮤니티 기능을 활용하여 정보와 지식을 위한 실시간 질의응답 시스템을 제안한다. 정보와 지식의 양이 증가 하고 인터넷과 스마트 디바이스의 발전으로 인하여 지식검색의 필요성이 증대되고 있다. 하지만 현재 컴퓨터는 사용자의 질문을 정확히 이해하고 관련된 답변을 제공해주기 어렵다. 본 논문에서 제안하는 질의응답 시스템은 스마트 디바이스를 이용하고 SNS와 같이 커뮤니티 기반의 서비스를 적용한 실시간 커뮤니티형 질의응답 시스템이다. 사용자의 질문을 분석하여 관심사가 같은 사용자들을 그룹화 하고 관심사가 같은 사용자끼리 질문과 답변을 할 수 있는 서비스를 제공하여 질문과 답변을 효율적으로 주고받을 수 있다. 또한 사용자 피드백을 적용하여 사용자 랭킹을 보여줌으로써 사용자들의 답변률을 향상 시키고 스팸성 답변자에게 제한을 할 수 있는 시스템을 제안한다.

  • PDF

Question Retrieval using Deep Semantic Matching for Community Question Answering (심층적 의미 매칭을 이용한 cQA 시스템 질문 검색)

  • Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.116-121
    • /
    • 2017
  • cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.

  • PDF

Question and Answering System through Search Result Summarization of Q&A Documents (Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템)

  • Yoo, Dong Hyun;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2014
  • A user should pick up relevant answers by himself from various search results when using user participation question answering community like Knowledge-iN. If refined answers are automatically provided, usability of question answering community must be improved. This paper divides questions in Q&A documents into 4 types(word, list, graph and text), then proposes summarizing methods for each question type using document statistics. Summarized answers for word, list and text type are obtained by question clustering and calculating scores for words using frequency, proximity and confidence of answers. Answers for graph type is shown by extracting user opinion from answers.

Question Retrieval using Deep Semantic Matching for Community Question Answering (심층적 의미 매칭을 이용한 cQA 시스템 질문 검색)

  • Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.116-121
    • /
    • 2017
  • cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.

  • PDF

Adolescents' Information-seeking Behavior for Gender Identity in a Community-driven Knowledge Site (청소년들의 성 정체성에 관한 지식검색 커뮤니티 정보탐색행태)

  • Yi, Da Jeong;Yi, Yong Jeong
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.161-181
    • /
    • 2019
  • People begin to recognize sexual orientation or gender identity in adolescence, and adolescents frequently use an accessible and anonymous anonymity knowledge retrieval community to explore sensitive health information about gender. This study attempted to observe their information search behavior based on questions and answers about adolescents' gender identity in the knowledge retrieval community. First, we wanted to examine their information needs and to investigate what factors they preferred to answer by comparing the characteristics of the answers adopted with the non-adopted answers among the answers provided in the questions they shared. To this end, Naver, Korea's representative knowledge search community. In Knowledge-iN, a total of 358 sets of data were analyzed, consisting of responses adopted over three years from January 2016 to December 2018. As a result, adolescents with concerns about gender identity demanded information about definition or confusion about gender identity. In the responses adopted by the users, the factors that gave empathy and positive feelings were higher than those that were not adopted, whereas the negative responses were higher in the unaccepted answers. This study is meaningful in that it analyzes the information needs and information search behaviors of adolescents with no established gender identity, expands the discussion in the information search field, and confirms cognitive and emotional models for information evaluation of health information users. Also, based on the research results, we propose practical implications for effective information services on gender identity that social media should provide to young people.

A Framework for Q&A Community based Vertical Search (Q&A 커뮤니티 기반 전문영역 검색을 위한 프레임워크)

  • Jeong, Ok-Ran;Oh, Je-Hwan;Lee, Eun-Seok
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.2
    • /
    • pp.143-158
    • /
    • 2011
  • This study suggests a framework which extracts features of collective intelligence from social Q&A community sites and takes advantage of those features upon vertical search for domain specific knowledge or information retrieval. One source of collective intelligence on the internet is the question and answer(Q&A) data available from many Q&A sites. Vertical search is focused on searching special areas or specific domains. This paper proposes a framework for extending the relevant terms by using Q&A information connected with query that the user wants to retrieve, and then applies them to specific domain field that requires professional and detailed knowledge.

A Quality Value Algorithm based on Text/Non-text Features in Q&A Documents (텍스트/비텍스트 특성기반 질의답변문서의 품질지수 알고리즘)

  • Kim, Deok-Ju;Park, Keon-Woo;Lee, Sang-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.105-108
    • /
    • 2010
  • 쌍방향으로 질문과 답변을 하는 커뮤니티 기반의 지식검색서비스에서는 질의를 통해 원하는 답변을 얻을 수 있지만, 수많은 사용자들이 참여함에 따라 방대한 문서 속에서 검증된 문서를 찾아내는 것은 점점 더 어려워지고 있다. 지식검색서비스에서 기존 연구는 사용자들이 생성한 데이터 즉 추천수, 조회수 등의 비텍스트 정보를 이용하거나 답변의 길이, 자료첨부, 연결어 등의 텍스트 정보 이용하여 전문가를 식별하거나 문서의 품질을 평가하고, 이를 검색에 반영하여 검색성능을 향상시키는 데 활용했다. 그러나 비텍스트 정보는 질의/응답의 초기에 사용자들에 의해 충분한 정보를 확보할 수 없는 단점이 제기 되며, 텍스트 정보는 전체의 문서를 답변의 길이, 자료 첨부등과 같은 일부요인으로 판단해야하기 때문에 품질평가의 한계가 있다고 볼 수 있겠다. 본 논문에서는 이러한 비텍스트 정보와 텍스트 정보의 문제점을 개선하기 위한 품질평가 알고리즘을 제안한다. 제안된 알고리즘을 통한 품질지수는 텍스트/비텍스트 정보와 소셜 네트워크 사용자 중앙성을 고려하여 질문에 적합하고 신뢰성 있는 답변을 랭킹화 함으로써 지식검색문서를 분별하는 지표가 되며, 이는 지식검색서비스의 성능향상에 기여를 할 수 있을 것으로 기대된다.

  • PDF

KOMUChat: Korean Online Community Dialogue Dataset for AI Learning (KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구)

  • YongSang Yoo;MinHwa Jung;SeungMin Lee;Min Song
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.219-240
    • /
    • 2023
  • Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.

Comparison of Readability between Documents in the Community Question-Answering (질의응답 커뮤니티에서 문서 간 이독성 비교)

  • Mun, Gil-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.25-34
    • /
    • 2020
  • Community question and answering service is one of the main sources of information and knowledge in the Web. The quality of information in question and answer documents is determined by the clarity of the question and the relevance of the answers, and the readability of a document is a key factor for evaluating the quality. This study is to measure the quality of documents used in community question and answering service. For this purpose, we compare the frequency of occurrence by vocabulary level used in community documents and measure the readability index of documents by institution of author. To measure the readability index, we used the Dale-Chall formula which is calculated by vocabulary level and sentence length. The results show that the vocabulary used in the answers is more difficult than in the questions and the sentence length is longer. The gap in readability between questions and answers is also found by writing institution. The results of this study can be used as basic data for improving online counseling services.