기계 독해는 문단과 질문이 주어질 때에 정답을 맞추는 자연어처리의 연구분야다. 최근 기계 독해 모델이 사람보다 높은 성능을 보여주고 있지만, 문단과 질의가 크게 변하지 않더라도 예상과 다른 결과를 만들어 성능에 영향을 주기도 한다. 본 논문에서는 문단과 질문 두 가지 관점에서 적대적 예시 데이터를 사용하여 보다 강건한 질의응답 모델을 훈련하는 방식을 제안한다. 트랜스포머 인코더 모델을 활용하였으며, 데이터를 생성하기 위해서 KorQuAD 1.0 데이터셋에 적대적 예시를 추가하여 실험을 진행하였다. 적대적 예시를 이용한 데이터로 실험한 결과, 기존 모델보다 1% 가량 높은 성능을 보였다. 또한 질의의 적대적 예시 데이터를 활용하였을 때, 기존 KorQuAD 1.0 데이터에 대한 성능 향상을 확인하였다.
정답 후보군 탐지 모델은 최근 활발히 진행되고 있는 질의-응답 데이터 수집 연구의 선행이 되는 연구로 특정 질문에 대한 정답을 주어진 단락에서 추출하는 작업을 말한다. 제안 모델은 포인터 네트워크 디코더를 통하여 기존의 순차 레이블링 모델에서 처리할 수 없었던 정답이 겹치는 문제에 대해서 해결할 수 있게 되었다. 그리고 독립된 두 개의 포인터 네트워크 디코더를 사용함으로써, 단일 포인터 네트워크로 처리할 수 없었던 정답의 탐지가 가능하게 되었다.
본 연구는 최근 주목받고 있는 텍스트 기반 생성형 인공지능에 대해 관심과 활용이 증가함에 따라 과학교육적 측면에서의 활용을 위해 생성형 인공지능의 주요 개념과 원리를 설명하고, 이를 효과적으로 활용할 수 있는 방안과 그 한계를 지적하며 이를 토대로 과학교육의 실행과 연구의 측면에서 시사점을 제공하는 것을 목적으로 한다. 최근 들어 증가하고 있는 생성형 인공지능은 대체로 인코더와 디코더로 이뤄진 트랜스포머 모델을 기반으로 하고 있으며, 인간의 피드백을 활용한 강화학습과 보상 모델에 대한 최적화, 문맥에 대한 이해 등을 통해 놀라운 발전을 이루고 있다. 특히, 다양한 사용자의 질문이나 의도를 이해하는 능력과 이를 바탕으로 한 글쓰기, 요약, 제시어 추출, 평가와 피드백 등 다양한 기능을 수행할 수 있다. 또한 교수자가 제시하는 예를 토대로 주어진 응답을 평가하거나 질문과 적절한 답변을 생성하는 등 학습자에 대한 진단과 실질적 교육내용의 구성 등 많은 유용성을 가지고 있다. 그러나 생성형 인공지능이 가지고 있는 한계로 인해 정확한 사실이나 지식에 대한 잘못된 전달, 과도한 확신으로 인한 편향, 사용자의 태도나 감정 등에 미칠 영향의 불확실성 등에 대한 문제 등에 대해 해가 없는지 검토가 필요하다. 특히, 생성형 인공지능이 제공하는 응답은 많은 사람들의 응답 데이터를 기반으로 한 확률적 접근이므로 매우 거리가 멀거나 새로운 관점을 제시하는 통찰적 사고나 혁신적 사고를 제한할 우려도 있다. 이에 따라 본 연구는 과학교수학습을 위해 인공지능의 긍정적 활용을 위한 여러 실천적 제언을 제시하였다.
지식 추적 (knowledge tacing)은 주어진 학습자의 과거 문제 해결 기록을 기반으로 학습자의 지식 습득 정도를 파악하여 목표 문제에 대한 정답 여부를 예측하는 것을 목표로 한다. 이전 연구에서는 이진 분류 기반의 모델을 사용하여 정답 유무만 예측하였기 때문에 학습자의 답변에 존재하는 정보를 활용하지 못한다. 최근 연구에서는 이를 생성 태스크로 변환하여 컴퓨터과학 분야에서 프로그래밍 질문에 대한 지식 추정을 수행하는 open-ended knowledge tracing (OKT)이 제안되었다. 하지만 최적의 OKT 모델에 대한 연구는 진행되지 않았으며 따라서 본 논문에서는 시간에 따라 변화하는 학습자의 지식 상태에 따라 답변 생성을 조정하는 새로운 OKT 방법론을 제안한다. 실험을 본 논문에서 제안하는 방법론의 우수성과 효율성을 증명한다.
이 논문에서는 목표에 대한 다양한 관점의 문헌연구를 종합하여 역동적 의사결정 과정으로서 목표개념을 새롭게 제안하고자 하였다. 목표는 인간 동기의 원천으로서, 동기적 행동이 시작되고 유지되는 전 과정을 관장한다. 하지만 각기 다른 이론과 연구마다 정의하고 있는 목표의 수준과 범위가 너무 다양하여 이론 간 소통이 사실상 불가능한 실정이다. 이러한 한계점을 극복하고자 먼저 기존의 목표 관련 이론들을 다섯 가지 중요 요소에 따라 분류하고, 분류 결과를 토대로 목표에 대한 새로운 정의를 도출하였다. 그 결과, 목표란 개인이 이루고자 하는 다면적이며 위계적인 최종 상태를 구조화하고 실행에 옮기는 동기적 과정으로 정의하였다. 이는 목표 지향적 활동 시 요구되는 세 가지 질문인 "왜-무엇을-어떻게"에 대한 해답을 찾는 과정이기도 하다. "왜"라는 질문은 목표의 생성단계를 의미하며, 목표의 원천이 되는 경험에 대한 의식적, 무의식적 해석을 바탕으로 인지적 스키마를 형성하는 단계이다. "무엇"에 대한 질문은 목표의 설정단계를 의미하며, 목표의 내용과 구조를 설정함으로써 목표 표상을 보다 구체화 시키는 단계이다. 마지막으로 "어떻게"라는 질문은 설정된 목표를 실행에 옮기는 단계로, 실행 여부에 대한 의사결정과 자기조절 과정이다. 마지막 장에서는 이와 같이 새롭게 제안된 목표개념을 청소년 학습자들이 지니는 실질적 고민들과 연관 지어 해결 방향을 제안하고자 하였다.
이 연구에서는 상호동료 질문생성 전략이 학생들의 개념 학습에 미치는 효과를 조사하였다. 남녀 공학 중학교 1학년 학생 92명을 통제 집단, 상호동료교수(RPT) 집단 및 상호동료 질문생성(RPT) 집단에 배치하고, '물질의 세 가지 상태'와 '분자의 운동' 단원을 대상으로 12차시 동안 수업을 실시하였다. 사전 과학 성취 수준에 관계없이 RPQ 집단의 개념 이해도 검사 점수가 세 집단 중에서 가장 높았고, RPT 집단은 통제 집단보다도 높았으며 이들 차이가 통계적으로 유의미하였다. 상위 학생들의 경우, RPQ 집단의 개념 응용력 점수는 다른 두 집단보다 유의미한 차이로 높았고, RPT 집단은 통제 집단보다 높았다. 하위 학생들의 경우에는 RPT 집단과 RPQ 집단의 개념 응용력 점수가 통제 집단보다 높았으나, RPT 집단과 RPQ 집단의 점수는 유의미한 차이가 없었다. 이러한 결과는 동료 간 교수 활동에 의한 상호작용이 학생들의 화학 개념 학습을 도와주며, 학생들이 직접 문제를 만드는 경우에 더욱 효과적임을 의미한다. 따라서 RPQ 전략을 중학교 과학 수업에서 학생들의 언어적 상호작용과 개념 학습을 촉진하기 위한 유용한 교수 방법의 하나로 제안한다.
최근 다양한 분야에서 자동 고객 응대 시스템을 도입하고 있으며 이에 따른 대화형 질의응답 시스템 연구의 필요성이 증가하고 있다. 본 논문에서는 새로운 도메인의 대화형 질의응답 시스템 구축에 필요한 말뭉치를 자동으로 생성하는 대화형 질의-응답 생성 시스템을 소개한다. 또한 이전 대화 내용을 고려하여 문서로부터 사용자의 다음 질문 대상이 될만한 응답 후보를 추출하는 맥락 관련 응답 추출 과제와 이에 대한 성능 평가 지표인 Sequential F1 점수를 함께 제안한다. 대화형 질의응답 말뭉치인 CoQA에 대해 응답 후보 추출 실험을 진행한 결과 기존의 응답 추출 모델보다 우리의 맥락 관련 응답 추출 모델이 Sequential F1 점수에서 31.1 높은 성능을 보였다. 또한 맥락 관련 응답 추출 모듈과 기존에 연구된 대화형 질의 생성 모듈을 결합하여 개발한 대화형 질의-응답 생성 시스템을 통해 374,260 쌍의 질의-응답으로 구성된 대화형 질의응답 말뭉치를 구축하였다.
최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.
본 연구는 두 집단지성의 가장 대표적인 서비스인 네이버 지식iN과 위키피디아의 구조적, 경험적 차이를 바탕으로 생산의 차원에서 생산 주기, 생산 참여자, 생산물의 모델을 설정하고, 새롭게 탄생하는 지식을 중심으로 검증함으로써 최종 지식 소비 행위를 반영한 각각의 종합모델을 도출하였다. 우리는 웹에서 집단지성의 일상화를 확인할 수 있다. 지식 획득 매체가 매스미디어에서 인터넷으로 변화하는 과정에서 등장한 포털 및 검색사이트는 지식의 생산이 전문가패러다임에서 소비자 중심으로 재편될 수 있는 가능성을 열어주었다. 그리고 이러한 생산 방식의 변화는 '지식'의 개념 역시 변화시키고 있다. 즉, 집단지성이라는 새로운 웹2.0의 현상이 지식생산방식을 변화시키고 변화된 지식생산방식은 '지식'자체를 변화시킨다는 이론적 가설을 도출할 수 있는 것이다. 본 연구는 이러한 새로운 현상들을 분석하기 위해서는 먼저 보다 엄밀하게 집단지성의 개념을 규정할 필요성에 출발하였다. 현재 집단지성이라는 이름으로 불리면서 급격히 성장하고 있는 위키 방식의 인터넷 서비스와 지식검색 방식의 인터넷 서비스를 비교함으로써 보다 정교한 집단지성의 모델을 구축하고자 하였다. 위키형 집단지성과 지식검색형 집단지성의 차이점은 경험적으로도 뚜렷하게 확인할 수 있다. 본 연구는 이러한 경험적 차이와 기존의 문헌에서 밝혀진 사실들을 바탕으로 두 서비스의 지식생산 방식을 생산플로우, 생산참여자 성향, 생산물(지식)의 성향과 같이 세 영역으로 나누어 각각의 가설 모델을 설정하고 이 모델을 선정된 질의어를 바탕으로 검증한 뒤에 최종적인 모델을 도출하는 방식으로 진행되었다. 지식검색형 집단지성은 '질문-답변-채택'의 구조이고, 그 구조 속에서 '질문기-답변기-순서화기'를 거쳐 하나의 지식 덩어리인 'K-let'을 생산한다. 생산된 'K-let'들은 지식검색서비스의 데이터베이스에 축적되고, 이는 공통된 질의어를 기준으로 소비자들에 의해서 검색되어 소비된다. 하나의 질문에 대해 여러 개의 답변들이 존재하고, 답변자의 성향은 크게 전문성과 체계성을 바탕으로 한 전문가형 답변자와 경험적이고 의견지향적인 대화형 답변자로 나눠진다. 다수의 네티즌들의 참여에 의해서 지식의 생산이 진행되므로 질문의 성향 역시 사실, 의견, 경험 등 다양한 스펙트럼을 가지는 모델로 설정하였다. 반면에 위키형 집단지성은 개방형 플랫폼을 바탕으로 한 백과사전의 형식이며, 이러한 형식 속에서 최초의 개념어 등록과 다수의 편집활동을 거치면서 완성되지 않는 하나의 아티클인 'W-let'을 생산한다. 이러한 'W-let'은 생성 초기에 소수에 의한 활발한 내용 입력 활동으로 어느 정도의 안정화를 거친 후에는 꾸준한 다수의 수정활동을 통해서 'W-let'의 생명력을 유지함으로써 지식의 실제적인 변화를 반영한다. 생산된 'W-let'들은 위키형 집단지성 서비스의 데이터베이스에 축적되고, 이것들은 내부링크를 통해서 모두 연결되어 있다. 백과사전 형식으로 하나의 개념어를 설명하는 하나의 아티클은 오로지 사실적인 지식들로만 구성되나 내부링크와 외부링크를 통해서 다양한 스펙트럼을 가지는 모델로 설정하였다. 위와 같이 설정된 모델을 바탕으로 공통된 질의어 및 개념어를 선정하여 각각의 서비스에 노출시켰다. 이를 통해서 얻어진 각 서비스의 데이터베이스에 축적된 모든 데이터들 중에서 일정한 기간을 기준으로 각각의 모델 검증에 필요한 데이터를 추출하여 분석하는 방식으로 진행되었다. 그 결과 지식검색형 집단지성에서는 '질문-답변-채택'의 생산 구조 속에 다수가 참여하여 질문-채택답변-기타답변으로 배열되어 있는 완성된 형태의 K-let들을 지속적으로 생산하며 비슷한 성향을 가진 K-let들이 반복적으로 생산되어 지식검색 데이터베이스에 누적된다. 지식 소비자들은 질의어 검색을 통해서 다양한 K-let들을 선택하여 비교, 검토한 후에 선택된 K-let들의 배열은 해체되어 소비자들에 의해서 재배열됨을 발견할 수 있었다. 이에 지식검색형 집단지성이란 다수의 의해서 생산되고 누적된 지식들이 소비자의 검색과 선택에 의해 해체되어 재배열되는 지식의 맞춤화 과정이라고 정의내릴 수 있었다. 반면에 위키형 집단지성에서는 '내용입력-미세수정' 구조 속에서 생명력 있는 W-let을 생성한다. W-let은 백과사전처럼 정리되어 내부링크를 통해서 서로 연결되고, 외부링크를 통해 확장되고, 지식소비자들은 검색을 통해 최초의 W-let에 도달한 후에 링크를 선택함으로써 지식을 확장시킴을 검증할 수 있었다. 따라서 위키형 집단지성이란 다수의 의해서 생산되고 정리된 지식들이 소비자의 검색과 링크에 의해 무한히 확장되는 지식의 확대 재생산되는 과정이라고 정의 내릴 수 있다. 결국, 현재의 집단지성이란 지식이 다수의 참여로 생산됨으로써 개인에게 맞춤화되고, 끊임없이 확대 재생산되는 과정을 의미한다. 그리고 이러한 집단지성의 방식은 지식이라는 현재의 차원을 넘어서 정치, 경제를 비롯한 사회의 전 영역으로 점차적으로 확대되어갈 것이다. 앞으로 연구들은 두 가지 모델이 혼재되어 있는 현재의 집단지성이 어떠한 새로운 모델을 만들면서 다른 영역으로 확장되어갈 것인지에 대해서 초점을 맞춰 나가야할 것이다.
RAG는 정보 검색과 셍성 모델을 결합하여 주어진 주제나 질문에 관련된 지식을 생성하는 방법이다. 본 연구는 RAG의 성능을 높이기 위해 문서 내 문장의 평균 길이에 따른 청크의 크기와 오버랩 크기를 비교하여 최적화한다. 이를 통해 참조 문서의 특징에 맞춘 RAG를 개발할 수 있고, 다양한 종류의 글에 대해 맞춤형 답변을 제공할 수 있을 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.