• Title/Summary/Keyword: 질량 효율

Search Result 380, Processing Time 0.023 seconds

Comparative Analysis of Mechanical Vibrations of an Air-Drop Hammer and a Counterblow Hammer in Forging Process (에어-드롭 해머와 카운터블로 해머 프레스 단조공정의 기계진동 비교해석)

  • Kim, S.T.;Choi, Y.H.;Ju, G.J.
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.10-18
    • /
    • 2022
  • Air-drop hammer press and counterblow hammer press are widely used power-drop forging hammersemploying different forging blow mechanisms. It is important and necessary to analyze mechanical vibrations of these two different hammers in their forging processes in order to develop high performance forging hammers. In this study, these two forging hammers were mathematically modelled as mass-spring-damper systems. For these two different types of forging hammers, the forging efficiency and mechanical vibrations due to hammer forging blow were theoretically analyzed and compared. The force transmitted to the ground was also determined and compared. Especially, effects of mass ratio and restitution coefficient on forging efficiency were investigated.

Rotational Motion Control Using ER Clutch/Brake Actuators (ER 클러치/브레이크 작동기를 이용한 회전운동제어)

  • Choi, S.B.;Cheong, C.C.;Kim, J.H.;Han, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.126-134
    • /
    • 1998
  • 본 연구에서는 회전운동을 제어하기 위한 새로운 작동기로서 전기장에 대하여 매우 빠른 응답특성을 갖고 있는 두 쌍의 실린더형 ER(electro-rheological) 클러치/브레이크 작동기를 제안하였다. 자체조성 된 ER유체의 빙햄특성 모델을 실험적으로 도출하였으며, 이와 연계한 작동기 모델을 구성하여 전기장에 따른 전달 및 제동 토크를 해석한 후 알맞은 크기의 클러치/브레이크 작동기를 제작하였다. 제작된 작동기의 동적특성(시상수 등)을 작동기 모델에 고려하기 위하여 계단입력 전기장에 따른 과도응답 실험을 클러치와 브레이크 모드에서 각각 수행하였다. 제안된 작동기의 응용성을 보이기 위하여 두쌍의 작동기로 구동되는 실험실 차원의 소형 와권식 세탁기 시스템을 구성한 후 동적지배방정식을 유도하다. 각 작동기와 연계된 PID제어기를 설계하여 세탁과 탈수시의 회전운동을 제어하였으며, 부하질량의 변화에 대한 작동기 시스템의 제어 효율성과 장시간 운전을 통한 제어 내구성 실험을 수행하였다.

  • PDF

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.

Acoustic technology-assisted rapid proteolysis for high-throughput proteome analysis (대량 발굴 프로테옴 분석을 위한 어쿠스틱 기술 기반 고속 단백질 절편화)

  • Kim, Bo-Ra;Huyen, Trang Tran;Han, Na-Young;Park, Jong-Moon;Yu, Ung-Sik;Lee, Hoo-Keun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.510-518
    • /
    • 2011
  • Recent developments and improvements of multiple technological elements including mass spectrometry (MS) instrument, multi-dimensional chromatographic separation, and software tools processing MS data resulted in benefits of large scale proteomics analysis. However, its throughput is limited by the speed and reproducibility of the protein digestion process. In this study, we demonstrated a new method for rapid proteolytic digestion of proteins using acoustic technology. Tryptic digests of BSA prepared at various conditions by super acoustic for optimization time and intensity were analyzed by LC-MS/MS showed higher sequence coverage in compared with traditional 16 hrs digestion method. The method was applied successfully for complex proteins of a breast cancer cells at 30 min of digestion at intensity 2. This new application reduces time-consuming of sample preparation with better efficiency, even with large amount of proteins, and increases high-throughput process in sample preparation state.

Effects of Aging and Soil Texture on Composting of Diesel-Contaminated Soil (디젤오염기간 및 토성이 오염토양 콤포스팅 처리에 미치는 영향)

  • Choi, Jung-Young;Namkoong, Wan;Park, Joon-Seok;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • This study was carried out to investigate the effects of aging and soil texture on composting of diesel-contaminated soil. The soils used for this study were silt loam and sand. Target contaminant, diesel oil, was spiked at 10,000mgTPH/kg of dry soil. Aging times of diesel-contaminated soils were 15days and 60days, respectively. Fresh diesel-contaminated soil was also investigated. Moisture content was controlled to 70% of soil field capacity. Mix ratio of soil to sludge was 1:0.3 as wet weight basis. Temperature was maintained at $20^{\circ}C$ Volatilization loss of TPH was below 2% of initial concentration. n-Alkanes lost by volatilization were mainly by the compounds of C10 to C17. Diesel in contaminated soil was mainly removed by biodegradation mechanism. First order degradation rate constant of TPH in sandy soil was ranged from 0.081 to 0.094/day, which is higher than that in silt loam(0.056-0.061/day). From fresh to 60day-aged soils, there was little difference of TPH biodegradation rate between the soils. Carbon recovery ranged from 0.61 to 0.89. TPH degradation rate was highly correlated with $CO_2$ production rate.

  • PDF

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry (양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.499-503
    • /
    • 2019
  • Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.

CFD Analysis on the Internal Reaction in the SNCR System (SNCR 시스템 내부의 물질 반응에 관한 전산해석적 연구)

  • Koo, Seongmo;Yoo, Kyung-Seun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Numerical analysis was done to evaluate the chemical reaction and the reduction rate inside of selective non-catalytic reduction to denitrification in combustion process. The $NO_X$ reduction in selective non-catalytic reduction is converted to not only nitrogen but also nitrous oxide. Simultaneous $NO_X$ reduction and nitrous oxide generation suppressing is required in selective non-catalytic reduction because nitrous oxide influences the global warming as a greenhouse gas. The current study was performed compare the computational analysis in the same temperature and amount of NaOH, and in comparison with the previous research experiments and confirmed the reliability of the computational fluid dynamics. Additionally, controlling the addition amount of NaOH to predict the $NO_X$ reduction efficiency and nitrous oxide production. Numerical analysis was done to check the mass fraction of each material in the measurement point at the end of selective non-catalytic reduction. Experimental Value and simulation value by numerical analysis showed an error of up to 18.9% was confirmed that a generally well predicted. and it was confirmed that the widened temperature range of more than 70% $NO_X$ removal rate is increased when the addition amount of NaOH. So, large and frequent changes of the reaction temperature waste incineration facilities are expected to be effective.

Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application (유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가)

  • Eunju Kim;Cheol-Jin Jeong;Kyung Woo Kim;Tae Gyu Song;Seong Kuk Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • In this study, the regeneration effect of pressurized water and ultrasonic cleaning was investigated for contaminated filter cloth from the sewage sludge filter press process. For this purpose, contaminated filter cloth was collected from a 3-ton sewage sludge hydrothermal carbon treatment filter press. First, the contamination characteristics were analyzed. According to the location of the filter cloth, air permeability and unit mass were measured, and compared with the values of a new filter cloth. Next, the results were mapped over the entire area to evaluate the contamination characteristics. Finally, pressure cleaning at 3 bar and ultrasound at frequencies of 34, 76, 120, and 168 kHz were performed on the contaminated filter cloth. In addition, the cleaning efficiency was evaluated by 3 levels of contamination degree. As a result, pore contamination occurred mainly at the bottom and both sides of the filter cloth, where the filter material was continuously injected and compressed. Surface contamination appeared evenly over the entire area. As a result of washing, air permeability increased by 1.3-3.1%p and contaminant removal was by 2.7-4.4% under pressure. In ultrasonic cleaning, air permeability increased by 12.5-61.5%p and contaminants were removed by 2.7-29.2%. In ultrasonic cleaning the lower the frequency, the higher air permeability and contaminant removal rate. Also, The higher pore contamination level, the better the air permeability improvement and contaminant removal.