• Title/Summary/Keyword: 진화적 최적화

Search Result 253, Processing Time 0.024 seconds

Self-tuning of Operator Probabilities in Genetic Algorithms (유전자 알고리즘에서 연산자 확률 자율조정)

  • Jung, Sung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.29-44
    • /
    • 2000
  • Adaptation of operator probabilities is one of the most important and promising issues in evolutionary computation areas. This is because the setting of appropriate probabilities is not only very tedious and difficult but very important to the performance improvement of genetic algorithms. Many researchers have introduced their algorithms for setting or adapting operator probabilities. Experimental results in most previous works, however, have not been satisfiable. Moreover, Tuson have insisted that “the adaptation is not necessarily a good thing” in his papers[$^1$$^2$]. In this paper, we propose a self-tuning scheme for adapting operator probabilities in genetic algorithms. Our scheme was extensively tested on four function optimization problems and one combinational problem; and compared to simple genetic algorithms with constant probabilities and adaptive genetic algorithm proposed by Srinivas et al[$^3$]. Experimental results showed that our scheme was superior to the others. Our scheme compared with previous works has three advantages: less computational efforts, co-evolution without additional operations for evolution of probabilities, and no need of additional parameters.

  • PDF

Analysis of the Levy Mutation Operations in the Evolutionary prograamming using Mean Square Displacement and distinctness (평균변화율 및 유일성을 통한 진화 프로그래밍에서 레비 돌연변이 연산 분석)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.833-841
    • /
    • 2001
  • Abstract In this work, we analyze the Levy mutation operations based on the Levy probability distribution in the evolutionary programming via the mean square displacement and the distinctness. The Levy probability distribution is characterized by an infinite second moment and has been widely studied in conjunction with the fractals. The Levy mutation operators not only generate small varied offspring, but are more likely to generate large varied offspring than the conventional mutation operators. Based on this fact, we prove mathematically, via the mean square displacement and the distinctness, that the Levy mutation operations can explore and exploit a search space more effectively. As a result, one can get better performance with the Levy mutation than the conventional Gaussian mutation for the multi-valued functional optimization problems.

  • PDF

Autonomous Bipedal Locomotion with Evolutionary Algorithm (진화적 알고리즘을 이용한 자율적 2족 보행생성)

  • Ok, Soo-Youl
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.610-616
    • /
    • 2004
  • In the research of biomechanical engineering, robotics and neurophysiology, to clarify the mechanism of human bipedal walking is of major interest. It serves as a basis of developing several applications such as rehabilitation tools and humanoid robots. Nevertheless, because of complexity of the neuronal system that interacts with the body dynamics system to make walking movements, much is left unknown about the details of locomotion mechanism. Researchers were looking for the optimal model of the neuronal system by trials and errors. In this paper, we applied Genetic Programming to induce the model of the nervous system automatically and showed its effectiveness by simulating a human bipedal walking with the obtained model.

A Two-tier Optimization Approach for Decision Making in Many-objective Problems (고도 다목적 문제에서의 의사 결정을 위한 이중 최적화 접근법)

  • Lee, Ki-Baek
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a novel two-tier optimization approach for decision making in many-objective problems. Because the Pareto-optimal solution ratio increases exponentially with an increasing number of objectives, simply finding the Pareto-optimal solutions is not sufficient for decision making in many-objective problems. In other words, it is necessary to discriminate the more preferable solutions from the other solutions. In the proposed approach, user preference-oriented as well as diverse Pareto-optimal solutions can be obtained as candidate solutions by introducing an additional tier of optimization. The second tier of optimization employs the corresponding secondary objectives, global evaluation and crowding distance, which were proposed in previous works, to represent the users preference to a solution and the crowdedness around a solution, respectively. To demonstrate the effectiveness of the proposed approach, decision making for some benchmark functions is conducted, and the outcomes with and without the proposed approach are compared. The experimental results demonstrate that the decisions are successfully made with consideration of the users preference through the proposed approach.

Simulation Analysis to Optimize the Management of Military Maintenance Facility (군 정비시설 운용 최적화를 위한 시뮬레이션 분석 연구)

  • Kim, Kyung-Rok;Rhee, Jong-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2724-2731
    • /
    • 2014
  • As the future national defense plan of government focus on advanced weapon system, military maintenance facility becomes more important. However, military maintenance facility has been managed by director's experience and simple mathematical calculation until now. Thus, the optimization for the management of military maintenance facility is suggested by more scientistic and logical methods in this study. The study follows the procedure below. First, simulation is designed according to the analysis of military maintenance facility. Second, independent variable and dependent variable are defined for optimization. Independent Variable includes the number of maintenance machine, transportation machine, worker in the details of military maintenance facility operation, and dependent variable involves total maintenance time affected by independent variable. Third, warmup analysis is performed to get warmup period, based on the simulation model. Fourth, the optimal combination is computed with evolution strategy, meta-heuristic, to enhance military maintenance management. By the optimal combination, the management of military maintenance facility can gain the biggest effect against the limited cost. In the future, the multipurpose study, to analyze the military maintenance facility covering various weapon system equipments, will be performed.

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

Human sensibility depending on the personality (개인 성향에 의존하는 감성)

  • Kim, Won-Sik
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.152-153
    • /
    • 2009
  • 개인의 감성에 영향을 미치는 요인은 개인적, 사회적, 문화적 요인이 중요한 비중을 차지한다. 여러 자료를 추적해보면 하나의 개체로서의 인간은 다른 개체와 마찬가지로 종족유지 본능이 가장 우선하며 생활경험을 통하여 그 종족유지의 극대화를 위하여 그 구성요소로서의 유전인자들이 최적화되는 방향으로 진화하고 있다고 볼 수 있다. 즉, 우리의 생체는 무엇이 우리의 종족유지를 위한 환경인지 경험을 통하여 터득하게 되고 새로운 내적, 외적 환경자극에 무의식적으로 직관적으로 대처하며, 감성이란 이러한 대처 양상의 하나라고 볼 수 있다. 본 연구에서는 이러한 관점에서 개인적, 사회적, 문화적 요인, 생애초기특정기간(critical period)의 경험, 감성유발 직전의 기분상태 등이 어떻게 감성에 영향을 미치는가를 고찰해보고자 한다.

  • PDF

Development of Optimization Algorithm Using Sequential Design of Experiments and Micro-Genetic Algorithm (순차적 실험계획법과 마이크로 유전알고리즘을 이용한 최적화 알고리즘 개발)

  • Lee, Jung Hwan;Suh, Myung Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.489-495
    • /
    • 2014
  • A micro-genetic algorithm (MGA) is one of the improved forms of a genetic algorithm. It is used to reduce the number of iterations and the computing resources required by using small populations. The efficiency of MGAs has been proved through many problems, especially problems with 3-5 design variables. This study proposes an optimization algorithm based on the sequential design of experiments (SDOE) and an MGA. In a previous study, the authors used the SDOE technique to reduce trial-and-error in the conventional approximate optimization method by using the statistical design of experiments (DOE) and response surface method (RSM) systematically. The proposed algorithm has been applied to various mathematical examples and a structural problem.

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차 전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.218-219
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching problem is allocating jobs to AGVs to minimizing QC delay and AGV total travel distance. Due to the highly dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching results. Given this situation, single rule-based approach is widely used due to its simplicity and small computational cost. However, single rule-based approach has a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. Proposed strategy consists of multiple decision criteria. A muti-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.

  • PDF

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.501-507
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching is assigning AGVs to requested job to minimizing the delay of QCs and the travel distance of AGVs. Due to the high dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching decisions. In this situation, approaches based on a single rule are widely used due to its simplicity and small computational cost. However, these approaches have a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. The Proposed strategy consists of multiple decision criteria. A multi-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.