• Title/Summary/Keyword: 진화적 최적화

Search Result 253, Processing Time 0.024 seconds

A Study of New Evolutionary Approach for Multiobjective Optimization (다목적함수 최적화를 위한 새로운 진화적 방법 연구)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

New Generation Gap Models for Evolutionary Algorithm in Real Parameter Optimization (실수최적화 진화 알고리즘을 위한 새로운 세대차 모델)

  • Choi, Jun-Seok;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • Two new generation gap models with modified parent-centric recombination(PCX) operator are proposed. First, the self-adaptation generation gap(SGG) model is a control method that keeps a replaced probability of parents by offspring to a certain level which obtains better performance. Second, virtual cluster generation gap(VCGG) is provided to extend distances among parents using clustering, which causes it to diversify individuals. In this model, distances among parents can be controlled by size of clusters. To demonstrate the effectiveness of our two proposed approaches, experiments for three standard test problems are executed and compared to most competing current approaches, CMA-ES and Generalized Generation Gap(G3) with PCX. It is shown two proposed methods are superior to consistently other approaches in the study.

Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations (진화연산을 이용한 동적 귀환 신경망의 구조 저차원화)

  • 김대준;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.65-73
    • /
    • 1997
  • This paper proposes a new method of the structure pruning of dynamic recurrent neural networks (DRNN) using evolutionary computations. In general, evolutionary computations are population-based search methods, therefore it is very useful when several different properties of neural networks need to be optimized. In order to prune the structure of the DRNN in this paper, we used the evolutionary programming that searches the structure and weight of the DRNN and evolution strategies which train the weight of neuron and pruned the net structure. An addition or elimination of the hidden-layer's node of the DRNN is decided by mutation probability. Its strategy is as follows, the node which has mhnimum sum of input weights is eliminated and a node is added by predesignated probability function. In this case, the weight is connected to the other nodes according to the probability in all cases which can in- 11:ract to the other nodes. The proposed pruning scheme is exemplified on the stabilization and position control of the inverted-pendulum system and visual servoing of a robot manipulator and the effc: ctiveness of the proposed method is demonstrated by numerical simulations.

  • PDF

Optimal design of fuzzy inference systems based on genetic granulation (진화 Granule 기반 퍼지추론 시스템의 최적 설계)

  • 박건준;이동윤;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.269-272
    • /
    • 2004
  • 본 논문은 비선형 시스템의 퍼지모델을 위해 정보 granules 기반 퍼지 추론 시스템의 새로운 설계 및 이의 최적화를 제시한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 둥에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의해 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되며 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 제안된 비선형 모델의 성능평가는 수치적인 예를 통해 비교 평가한다.

  • PDF

Schema Analysis on Co-Evolutionary Algorithm (공진화 알고리즘에 있어서 스키마 해석)

  • Kwee-Bo Sim;Hyo-Byung Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.616-623
    • /
    • 1998
  • Holland가 제안한 단순 유전자 알고리즘은 다원의 자연선택설을 기본으로 한 군 기반의 최적화 방법으로서, 이론적 기반으로는 스키마 정리와 빌딩블록 가설이 있다. 단순 유전자 알고리즘(SGA)이 이러한 이론적 기반에도 불구하고 여전히 일부 문제에 있어서 최적해로의 수렴을 보장하지 못하고 있다. 따라서 최근에 두 개의 집단이 서로 상호작용을 하며 진화하는 공진화 방법에 의해 이러한 문제를 해결하려고 하는데 많은 관심이 모아지고 있다. 본 논문에서는 이러한 공진화 방법이 잘 동작하는지에 대한 이론적 기반으로 확장 스키마 정리를 제안하고, SGA에서는 해결하지 못하는 최적화 문제, 예를 들면 deceptive function,에서 SGA와 공진화에 의한 방법을 비교함으로써 확장된 스키마 정리의 유효성을 확인한다.

  • PDF

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.

On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm (Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구)

  • 홍영표;장춘서
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

Application of a Penalty Function to Improve Performance of an Automatic Calibration for a Watershed Runoff Event Simulation Model (홍수유출 모형 자동 보정의 벌칙함수를 이용한 기능 향상 연구)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1213-1226
    • /
    • 2012
  • Evolutionary algorithms, which are frequently used in an automatic calibration of watershed runoff simulation models, are unconstrained optimization algorithms. An additional method is required to impose constraints on those algorithms. The purpose of the study is to modify the SCE-UA (shuffled complex evolution-University of Arizona) to impose constraints by a penalty function and to improve performance of the automatic calibration module of the SWMM (storm water management model) linked with the SCE-UA. As indicators related to peak flow are important in watershed runoff event simulation, error of peak flow and error of peak flow occurrence time are selected to set up constraints. The automatic calibration module including the constraints was applied to the Milyang Dam Basin and the Guro 1 Pumping Station Basin. The automatic calibration results were compared with the results calibrated by an automatic calibration without the constraints. Error of peak flow and error of peak flow occurrence time were greatly improved and the original objective function value is not highly violated in the automatic calibration including the constraints. The automatic calibration model with constraints was also verified, and the results was excellent. In conclusion, the performance of the automatic calibration module for watershed runoff event simulation was improved by application of the penalty function to impose constraints.

Deployment Method for Real-time Radio Access Network Optimizer in CDMA Network (CDMA망에서 실시간 무선망 운용 및 최적화시스템 구축 방안)

  • Park Sang-Jin;Lee Yong-Hee;Rhee Chi-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.253-257
    • /
    • 2003
  • CDMA 방식의 디지털 이동통신 망은 기존의 2G 방식에서 IX, IxEV-DO을 거쳐 WCDMA로 비약적으로 발전하고 있으며, 이에 따라 무선망 운용 및 최적화 방법도 진화해가고 있다. 운용자들이 Field Tool을 사용하여 직접 Field 데이터를 측정, 분석하고 조치하는 방식이 가장 기본적인 방법이라면, Field 데이터와 Network 데이터를 함께 수집하여 분석하는, 보다. 발전된 방법도 사용되고 있다. 그러나, 이러한 방법도 여러 Tool에서 데이터를 off-line으로 수집한 후 분석 작업을 수동으로 반복 수행해야하는 번거로움이 있어, 실시간 on-line 무선망 최적화 시스템을 통한 체계적이고 과학적인 운용 방법을 생각해 볼 수 있다. 우선, 타 운용 Tool 들과의 on-line 연동으로 중앙 집중적 데이터베이스를 구축하여, 무선망에 관련된 모든 데이터에 대한 통합적인 관리가 필요하다. 이 데이터베이스를 이용하여, 실시간으로 무선망 성능 및 효율 저하 원인 분석을 실시하며, 분석된 결과는 기지국의 상태 및 문제점 도출에서부터 최종 처방까지 제시해준다. 본 논문에서는 이러한 솔루션을 구축하기 위한 다양한 네트웍 데이터 연동(성능, 장애, 구성, RF, 실측 데이터 등), 주요 KPI (Key Performance Indicator) 모니터링, 통계적 분석, 무선망 분석 등에 대해 고찰해본다.

  • PDF