• Title/Summary/Keyword: 진화적 최적화

Search Result 253, Processing Time 0.026 seconds

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Automatic Design of Fuzzy Controller Using Clustering and Genetic Algorithm (클러스터링과 GA를 이용한 퍼지 제어기 설계 자동화)

  • Yoon, Yong-Seock;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2953-2955
    • /
    • 2000
  • 본 논문에서는 전문가의 지식이 없는 상황에서 자동적으로 최적의 퍼지 제어기를 설계하는 방법에 대해 연구한다. 먼저 퍼지 제어기의 규칙 설정을 위해 기존의 PID 제어기의 입출력 데이터를 클러스터링한다. 군집된 데이터들로부터 클러스터의 수를 파악하고 이를 바탕으로 퍼지 제어를 위한 규칙의 수를 결정한다. 둘째로 퍼지 제어기의 여러 파라미터들은 유전자 알고리즘을 적용하여 최적화한다. GA를 이용한 최적화 과정에서는 성능평가 기준으로 기준입력에 대한 시스템 응답간의 오차와 오버슈트의 크기를 사용하여 응답이 빠르고 안정적인 제어기를 설계하도록 진화방향을 설정한다. 이렇게 만들어진 퍼지 제어기의 성능을 기존의 PID 제어기와 비교 평가한다

  • PDF

A Cellular Learning Strategy for Local Search in Hybrid Genetic Algorithms (복합 유전자 알고리즘에서의 국부 탐색을 위한 셀룰러 학습 전략)

  • Ko, Myung-Sook;Gil, Joon-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.669-680
    • /
    • 2001
  • Genetic Algorithms are optimization algorithm that mimics biological evolution to solve optimization problems. Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex fitness landscapes. Hybrid genetic algorithm that is combined with local search called learning can sustain the balance between exploration and exploitation. The genetic traits that each individual in the population learns through evolution are transferred back to the next generation, and when this learning is combined with genetic algorithm we can expect the improvement of the search speed. This paper proposes a genetic algorithm based Cellular Learning with accelerated learning capability for function optimization. Proposed Cellular Learning strategy is based on periodic and convergent behaviors in cellular automata, and on the theory of transmitting to offspring the knowledge and experience that organisms acquire in their lifetime. We compared the search efficiency of Cellular Learning strategy with those of Lamarckian and Baldwin Effect in hybrid genetic algorithm. We showed that the local improvement by cellular learning could enhance the global performance higher by evaluating their performance through the experiment of various test bed functions and also showed that proposed learning strategy could find out the better global optima than conventional method.

  • PDF

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

물 마시기의 유체역학

  • Kim, Won-Jeong;Kim, Ho-Yeong
    • Journal of the KSME
    • /
    • v.53 no.5
    • /
    • pp.30-34
    • /
    • 2013
  • 현재까지 동물과 관련된 생체유체역학 연구에서는 비행이나 수영과 같은 추진원리 또는 혈액과 공기의 순환원리를 많이 다루어 왔다. 이 글에서는 새로운 생체유체역학 분야로서, 동물들의 물 마시는 원리를 역학적인 관점에서 소개하고, 각 동물의 행위가 진화를 통해 최적화된 산물임을 설명한다.

  • PDF

Artillery Error Budget Method Using Optimization Algorithm (최적화 알고리즘을 활용한 곡사포의 사격 오차 예측 기법)

  • An, Seil;Ahn, Sangtae;Choi, Sung-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2017
  • In R&D of artillery system, error budget method is used to predict artillery firing error without field firing test. The error budget method for artillery has been consistently developed but apply for practical R&D of the weapon system has been avoided because of lacks of error budget source information. The error budget source is composed of every detailed error components which affect total distance and deflection error of artillery, and most of them are difficult to be calculated or measured. Also with the inaccuracy of source information, simulated error result dose not reflect real firing error. To resolve that problem, an optimization algorithm is adopted to figure out error budget sources from existing filed firing test. The method of finding input parameter estimation which is commonly used in aerodynamics was applied. As an optimization algorithm, CMA-ES is used and presented in the paper. The error budget sources which are figured out by the presented method can be applied to compute ROC of new weapon systems and may contribute to an improvement of accuracy in artillery.

Designing the Moving Pattern of Cleaning Robot based on Grammatical Evolution with Conditional Probability Table (문법적 진화기법과 조건부 확률을 이용한 청소 로봇의 이동 패턴 계획)

  • Gwon, Soon-Joe;Kim, Hyun-Tae;Ahn, Chang Wook
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.184-188
    • /
    • 2016
  • The cleaning robot is popularly used as a home appliance. The state-of-the-art cleaning robot can clean more efficiently by using information gathered from its sensor, which is difficult for low-price cleaning robots due to limitation in this aspect. In this paper, we suggested a method for the moving pattern of cleaning robot based on grammatical evolution. Optimized program is generated by using moving pattern grammar, which is defined by Backus-Naur form. In addition, conditional probability is used between each of the grammar elements during the program creation process. The proposed method is evaluated by robot simulation in order to verify its performance and further compare it with existing algorithms. The experiment results showed that the proposed method is better than the compared algorithms.

Technology in 3GPP Self-Optimizing Network (3GPP 자율적 네트워크 최적화 기술)

  • Shin, Y.S.;Na, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.6
    • /
    • pp.71-81
    • /
    • 2014
  • 5G 무선통신시스템은 동일한 영역에서 스펙트럼 사용 효율성을 개선하기 위해 매크로셀과 소형셀이 공존하는 이종 네트워크(HetNet: Heterogeneous Network) 형태로 진화하고 있으며, 급증하는 모바일 트래픽을 효율적으로 처리하기 위해 소형셀들을 고밀도 네트워크(High dense network)로 구축하는 방안이 연구되고 있다. 매크로셀과 고밀도 소형셀들이 중첩되어 구축되는 HetNet 기반 셀룰러 네트워크에서 소형셀 시스템의 구성과 파라미터 최적화를 통한 성능 유지를 운영자가 수동으로 조정하는 것은 한계가 있으므로 네트워크 환경변화에 따라 시스템에서 자율적으로 파라미터를 조정하여 시스템 성능을 유지하는 기술이 요구되고 있다. 본고에서는 시스템 운용 중 자율적인 최적화를 통해 시스템 성능을 최적으로 유지하고 유지비용을 최소화하는 3GPP 자율적 네트워크 최적화 기술을 소개한다.

  • PDF

Network Optimization in the Inhomogeneous Distribution Using Genetic Algorithm Traffic (유전자 알고리즘을 이용한 비균일 트래픽 환경에서의 셀 최적화 알고리즘)

  • 박병성;한진규;최용석;조민경;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.2B
    • /
    • pp.137-144
    • /
    • 2002
  • In this paper, we optimize the base station placement and transmission power using genetic approach. A new representation describing base station placement and transmit power with real number is proposed, and new genetic operators are introduced. This new representation can describe the locations, powers, and number of base stations, Considering coverage, power and economy efficiency, we also suggest a weighted objective function. Our algorithm is applied to an obvious optimization problem, and then it is verified. Moreover, our approach is tried in inhomogeneous traffic distribution. Simulation result proves that the algorithm enables to fad near optimal solution according to the weighted objective function.

A study on Comparison of the Palate Methods for Multi-objective optimization ptoblem (다중 최적화 문제에서 파레토 방법들 비교 연구)

  • Ko, Young-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2639-2641
    • /
    • 2003
  • 유전자 알고리즘은 다윈의 자연선택설과 유전자의 진화 개념을 이용한 적응 탐색 알고리즘으로 적용하고자 하는 문제의 매개 변수를 유전자와 비슷한 데이터 구조로 부호화하고, 유전 연산자를 이용하여 문제의 해답을 찾는 알고리즘이다. 최근 유전자 알고리즘은 이러한 복수개의 목적 함수를 최적화 하기 위한 다중 최적화 문제를 위한 최적화 기술로서의 관심이 크게 다루어지고 있으며 전송 문제, 생산 공정 문제 계획 등과 같은 다목적 함수를 다루는 많은 응용 부분에 대해 적용되고 있다. 본 논문에서는 기본적인 다중 목적 함수용 예와 Gen과 Kim이 제안한 네트워크 신뢰도를 고려한 연결 비용과 메시지 지연을 고려한 이중 구속 통신망 설계 문제를 가지고 가중치 합과 여러 가지 파레토 방법들을 비교하고 연구 검토 하고자 한다.

  • PDF