Journal of the Korean Society of Manufacturing Technology Engineers
/
v.19
no.5
/
pp.589-595
/
2010
This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.
본 논문에서는 전문가의 지식이 없는 상황에서 자동적으로 최적의 퍼지 제어기를 설계하는 방법에 대해 연구한다. 먼저 퍼지 제어기의 규칙 설정을 위해 기존의 PID 제어기의 입출력 데이터를 클러스터링한다. 군집된 데이터들로부터 클러스터의 수를 파악하고 이를 바탕으로 퍼지 제어를 위한 규칙의 수를 결정한다. 둘째로 퍼지 제어기의 여러 파라미터들은 유전자 알고리즘을 적용하여 최적화한다. GA를 이용한 최적화 과정에서는 성능평가 기준으로 기준입력에 대한 시스템 응답간의 오차와 오버슈트의 크기를 사용하여 응답이 빠르고 안정적인 제어기를 설계하도록 진화방향을 설정한다. 이렇게 만들어진 퍼지 제어기의 성능을 기존의 PID 제어기와 비교 평가한다
Genetic Algorithms are optimization algorithm that mimics biological evolution to solve optimization problems. Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex fitness landscapes. Hybrid genetic algorithm that is combined with local search called learning can sustain the balance between exploration and exploitation. The genetic traits that each individual in the population learns through evolution are transferred back to the next generation, and when this learning is combined with genetic algorithm we can expect the improvement of the search speed. This paper proposes a genetic algorithm based Cellular Learning with accelerated learning capability for function optimization. Proposed Cellular Learning strategy is based on periodic and convergent behaviors in cellular automata, and on the theory of transmitting to offspring the knowledge and experience that organisms acquire in their lifetime. We compared the search efficiency of Cellular Learning strategy with those of Lamarckian and Baldwin Effect in hybrid genetic algorithm. We showed that the local improvement by cellular learning could enhance the global performance higher by evaluating their performance through the experiment of various test bed functions and also showed that proposed learning strategy could find out the better global optima than conventional method.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.5
/
pp.473-478
/
2013
In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.
현재까지 동물과 관련된 생체유체역학 연구에서는 비행이나 수영과 같은 추진원리 또는 혈액과 공기의 순환원리를 많이 다루어 왔다. 이 글에서는 새로운 생체유체역학 분야로서, 동물들의 물 마시는 원리를 역학적인 관점에서 소개하고, 각 동물의 행위가 진화를 통해 최적화된 산물임을 설명한다.
In R&D of artillery system, error budget method is used to predict artillery firing error without field firing test. The error budget method for artillery has been consistently developed but apply for practical R&D of the weapon system has been avoided because of lacks of error budget source information. The error budget source is composed of every detailed error components which affect total distance and deflection error of artillery, and most of them are difficult to be calculated or measured. Also with the inaccuracy of source information, simulated error result dose not reflect real firing error. To resolve that problem, an optimization algorithm is adopted to figure out error budget sources from existing filed firing test. The method of finding input parameter estimation which is commonly used in aerodynamics was applied. As an optimization algorithm, CMA-ES is used and presented in the paper. The error budget sources which are figured out by the presented method can be applied to compute ROC of new weapon systems and may contribute to an improvement of accuracy in artillery.
The cleaning robot is popularly used as a home appliance. The state-of-the-art cleaning robot can clean more efficiently by using information gathered from its sensor, which is difficult for low-price cleaning robots due to limitation in this aspect. In this paper, we suggested a method for the moving pattern of cleaning robot based on grammatical evolution. Optimized program is generated by using moving pattern grammar, which is defined by Backus-Naur form. In addition, conditional probability is used between each of the grammar elements during the program creation process. The proposed method is evaluated by robot simulation in order to verify its performance and further compare it with existing algorithms. The experiment results showed that the proposed method is better than the compared algorithms.
5G 무선통신시스템은 동일한 영역에서 스펙트럼 사용 효율성을 개선하기 위해 매크로셀과 소형셀이 공존하는 이종 네트워크(HetNet: Heterogeneous Network) 형태로 진화하고 있으며, 급증하는 모바일 트래픽을 효율적으로 처리하기 위해 소형셀들을 고밀도 네트워크(High dense network)로 구축하는 방안이 연구되고 있다. 매크로셀과 고밀도 소형셀들이 중첩되어 구축되는 HetNet 기반 셀룰러 네트워크에서 소형셀 시스템의 구성과 파라미터 최적화를 통한 성능 유지를 운영자가 수동으로 조정하는 것은 한계가 있으므로 네트워크 환경변화에 따라 시스템에서 자율적으로 파라미터를 조정하여 시스템 성능을 유지하는 기술이 요구되고 있다. 본고에서는 시스템 운용 중 자율적인 최적화를 통해 시스템 성능을 최적으로 유지하고 유지비용을 최소화하는 3GPP 자율적 네트워크 최적화 기술을 소개한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.2B
/
pp.137-144
/
2002
In this paper, we optimize the base station placement and transmission power using genetic approach. A new representation describing base station placement and transmit power with real number is proposed, and new genetic operators are introduced. This new representation can describe the locations, powers, and number of base stations, Considering coverage, power and economy efficiency, we also suggest a weighted objective function. Our algorithm is applied to an obvious optimization problem, and then it is verified. Moreover, our approach is tried in inhomogeneous traffic distribution. Simulation result proves that the algorithm enables to fad near optimal solution according to the weighted objective function.
유전자 알고리즘은 다윈의 자연선택설과 유전자의 진화 개념을 이용한 적응 탐색 알고리즘으로 적용하고자 하는 문제의 매개 변수를 유전자와 비슷한 데이터 구조로 부호화하고, 유전 연산자를 이용하여 문제의 해답을 찾는 알고리즘이다. 최근 유전자 알고리즘은 이러한 복수개의 목적 함수를 최적화 하기 위한 다중 최적화 문제를 위한 최적화 기술로서의 관심이 크게 다루어지고 있으며 전송 문제, 생산 공정 문제 계획 등과 같은 다목적 함수를 다루는 많은 응용 부분에 대해 적용되고 있다. 본 논문에서는 기본적인 다중 목적 함수용 예와 Gen과 Kim이 제안한 네트워크 신뢰도를 고려한 연결 비용과 메시지 지연을 고려한 이중 구속 통신망 설계 문제를 가지고 가중치 합과 여러 가지 파레토 방법들을 비교하고 연구 검토 하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.