• Title/Summary/Keyword: 진동 frequency

Search Result 5,537, Processing Time 0.026 seconds

Measurements of the Out-of-Plane Vibration Intensity of Coupled Plate (연성평판의 면외 진동인텐시티 측정)

  • 전진숙;길현권;이병철;김창열;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.831-835
    • /
    • 2003
  • The objective of this paper is to suggest an experimental technique to measure the out-of-plane vibration intensity of a coupled plate. In order to measure the out-of-plane vibration intensity of the plate, the frequency response technique has been implemented. In this technique, the 2-D intensity vector at a measurement point has been estimate from the frequency response functions measured at 4 points in the neighborhood of the measurement point. The experimental result has been compared with a theoretical result. It showed that the experimental technique can be effectively used to measure the out-of-plane vibration intensity of plates.

  • PDF

Free Vibration Analysis of Helical Springs (헬리컬 스프링의 자유진동 해석)

  • 김월태;정명조;김현수;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.977-983
    • /
    • 2003
  • Free vibration analysis of helical springs was performed by the use of the commercial finite element analysis program, ANSYS. The investigation of national frequency was focused on the effect of various parameters such as boundary conditions, spring indices, number of coil turns and helix angles which are considered to affect the free vibration of a spring. The finite element method was validated by comparison with the result of a previouosly published literature. The similarity of frequency trend was shown among three boundary conditions: clamped-clamped, free-free, simpliy supported-simply supported but there was no similarity in light of mode shapes among them. Several modes showed similar frequencies on and near the frequencies identified by the natural frequency formula of Wahl. Natural frequencies increased with spring indices and number of turns decreasing and with helix angles increasing. The results investigated by finiete element method were compared with the experemental result and theoretical result and showed a good agreement among them.

  • PDF

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.268-273
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed

  • PDF

Verification on Damage Calculating Method of Vibration Fatigue Using Uni-axial Vibration Test (단축가진 시험을 통한 진동내구 손상도 계산)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.521-528
    • /
    • 2006
  • The vibration fatigue is suitable case of fatigue problem that system is exposed to the random or other irregular sources. Even some kinds of effort using power spectral density (PSD) and statistical concept was presented to cope with the intangible force signal, it is still lack of providing a reasonable solution when its exciting frequency is near or beyond of first eigenvalue. In this paper, energy approach method is presented to calculate a vibration induced fatigue damage in frequency domain. Since the corresponding damage become much larger than nominal case when the vibration is coupled with a mode shape of given structure, the new technique compensate the characteristics of structure with a measured frequency response function (FRF) between forcing acceleration and responding stress.

Estimation of the Vibration Endurance Characteristics of Air Cleaner Insulators for Vehicles (차량용 에어클리너 인슐레이터의 진동 내구성 평가)

  • Kim Jung Heon;Kim Seockhyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.897-902
    • /
    • 2004
  • In this paper, a vibration endurance test is performed on rubber insulators used for vehicle air cleaners. Based on the test results, the endurance characteristics depending on the type and the material of the insulators are estimated. The frequency response characteristics of the air cleaner system including the insulator are investigated to identify the cause of wear and failure of the insulator. New insulator models with improved endurance characteristics are proposed and tested. Test results show that the vibration endurance property of the insulator is strongly dependent on the frequency response characteristics of the air cleaner system as well as the deformed shape of the insulator.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Vibration Characteristics of CD and DVD Disks (CD 및 DVD 디스크의 진동 특성)

  • 이승엽;임효석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.998-1003
    • /
    • 2003
  • The aerodynamically excited vibration and natural frequency of rotating CD and DVD disks are analytically and experimentally studied in this paper The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping components. The explicit expression on natural frequency of the air coupled disk is obtained as functions of the three aerodynamic coefficients. The experiments performed using a vacuum chamber and CD/DVD disks rotating in vacuum, open air and enclosure give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion (병진 가속도 운동을 하는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.349-354
    • /
    • 2001
  • A structure which is accelerated in the chordwise direction induces variation of the bending stiffness due to inertia force. Thus, the characteristic of natural vibration is also changed. This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. The dependence of natural frequencies and modes on the acceleration changes of the plate is investigated. Particularly, a natural frequency loci veering is observed and discussed in the present study.

  • PDF

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun;Nam, Y.S.;Eun, Sung-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.429-434
    • /
    • 2004
  • Vibration response of the tower structure of a 750kW wind turbine generator is investigated by measurement and analysis. Acceleration response of the tower under various operation condition is monitored in real time by vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the wind turbine tower.

  • PDF

Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions (국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석)

  • Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2011
  • The characteristics of vertical to horizontal ratio of response spectrum from 20 recent earthquakes were analysed. Response spectrum of 260 horizontal and 130 vertical ground motions were normalized by peak ground acceleration at each resonance frequency from 0.1 to 50Hz. It has been identified that the ratio of vertical to horizontal response spectrum has strong dependancy on epicentral distance and resonance frequency. The ratio of vertical to horizontal response spectrum for the 0-50km epicentral distance group are larger than 2/3 values, which is a standard engineering rule-of-thumb V/H=2/3, at resonance frequency above 7-8Hz. All the 3 groups such as 50-100, 100-150- and 150-200km epicentral distance have shown larger values of vertical to horizontal ratio than 2/3 at resonance frequency above 15Hz and also are larger than 2/3 at resonance frequency below 8-10Hz. Even though there are differences in specific resonance frequency values which depend on the epicentral distance group, we should be careful of seismic design of vertical component of the structures winch are located within the range of about 200km distance. form the potentially seismic causative faults.