• Title/Summary/Keyword: 진동 응답 스펙트럼

Search Result 201, Processing Time 0.021 seconds

The Improvement of Multi-dof Impulse Response Spectrum by Using Optimization Technique (최적화 기법을 이용한 다자유도 충격응답스펙트럼의 오차 개선)

  • 안세진;정의봉
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.792-798
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function (FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

Maximum Control Force of Velocity-dependent Damping Devices Using Response Estimation Models (응답예측모델을 이용한 속도의존형 감쇠장치의 최대제어력 산정)

  • 이상현;민경원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.503-511
    • /
    • 2004
  • In this study, for estimating responses of a controlled structure and determining the maximum control force of velocity-dependent damping devices, three estimation models such as Fourier envelope convex model, probability model, and Newmark design spectrum are used. For this purpose, a procedure is proposed for estimating actual velocity using pseudo-velocity and this procedure considers the effects of damping ratio increased by the damping device. Time history results indicate that actual velocity should be used for estimating accurate maximum control force of damping device and Newmark design spectrum modified by the proposed equation gives the best estimation results for over all period structures.

Stochastic Analysis in the Generation of Floor Response Spectra for Liner Systems with Proportional Damping (추계학적(推計學的) 해석법(解析法)에 의한 선형비례감쇠(線形比例減衰) 시스템의 층응답(層應答)스펙트럼)

  • Park, Young Suk;Seo, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.77-85
    • /
    • 1988
  • A stochchastic analysis procedure of generating floor response spectra for proportionally damped linear systems subject to earthquake loading is presented. Theories of random vibration and mode acceleration method are used in the formulation of governing equations. The structure-oscillator interaction is not considered. It is assumed that the input motions and oscillator responses are stationary Gaussian processes with mean zero. The nonstationary characteristics of earthquake motion are incorporated in the peak factor which is based on Vanmarcke's theory. Floor response spectra for both resonance and non-resonance cases are calculated under the assumption that the peak factors for structure and oscillator are equal to that for ground response spectrum. The validity of this method is demonstrated by comparing the results obtained by proposed method with those by time history analyses. The results obtained by this method are conservative and accurate with tolerable precision. This method saves much computing time compared with time history analysis method.

  • PDF

Load Carrying Capacity Evaluation of Single Span Bridge using Impact Factor Response Spectrum (충격계수 응답스펙트럼을 이용한 단경간 교량의 내하력 평가)

  • Lee, Huseok;Roh, Hwasung;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.730-736
    • /
    • 2016
  • In a previous study, the impact factor response spectrum and corresponding method for evaluating the load carrying capacity of bridges was suggested to improve the existing evaluation method. To verify the applicability of the suggested method, which is based on the frequency of bridges, the dynamic characteristic test for an actual single span simply-supported bridge was conducted. Through a field test under ambient traffic conditions, the dynamic response of the bridge was obtained using wireless accelometers and its fundamental frequency was identified. The peak impact factor was determined from the identified frequency and the impact factor response spectrum. The load carrying performance variation of the bridge was estimated considering the performance reduction factor, which was calculated using the current and previous natural frequency and impact factor. From the result, the load carrying capacity of the bridge was decreased, but the capacity was still enough because its value is greater than the design live load. Through the overall procedures and technical details presented in this paper, the suggested evaluation method can be applied to actual bridges with the acceleration data measured under ambient traffic conditions and the impact factor response spectrum.

Characteristics of Forced Vibration System According to the Frequency of External Exciting Force (외부 가진력의 주파수에 따른 강제진동시스템의 특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.130-137
    • /
    • 2021
  • The characteristics of forced vibration by an external excitation force having a frequency were analyzed according to the amplitude and frequency of the excitation force. To obtain displacement, velocity, and acceleration, numerical analysis was performed to obtain the frequency response, and in particular, each FRF(Frequency Response Function) was analyzed to reveal the location of the system natural frequency and excitation frequency in the frequency domain. In the vibration model caused by external excitation, the natural frequency and distribution of the surrounding excitation mode in displacement, velocity and acceleration FRF. The FRF was also shown in the power spectrum and FRF of real and imaginary parts. The external excitation force was approximated with the excitation force of a sine wave by giving the amplitude and frequency, the mode generated by this excitation force could be distinguished. After numerical analysis by changing the equivalent mass, damping and stiffness, the forced vibration response characteristics by external excitation force were systematically analyzed.

A Study on the Identification of Vibration Sources of a Gasoline Engine by Multi-Dimensional Spectral Analysis (다차원 스펙트럼 해석 에 의한 가솔린 엔진 의 진동원 검출 에 관한 연구)

  • 강명순;오재응;서상현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.691-698
    • /
    • 1985
  • This paper presents a method for the identification of vibration sources in a multiple input system where the input source may be coherent with each other. Using multi-dimensional spectral analysis, it is found that one of the most significant vibration sources of a gasoline engine is the pressure variation within the cylinder. In this analysis the concepts of residual spectral analysis and the partial coherence function are applied. Finally, the overall levels of the acceleration on the cylinder block obtained by multi-dimensional spectral analysis are compared with those by the frequency response function approach. The experimental results have shown a good agreement with the results calculated by this method the input sources are coherent strongly each other.

FRF Analysis of a Vehicle Passing the Bump Barrier (둔턱 진행 차량의 주파수응답 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2022
  • The purpose of this study was to investigate the frequency characteristics of forced vibration considering the vehicle progress. And the vibration characteristics in frequency domain that occur, when vehicle passes the bump, were analyzed. The responses such as displacement, velocity and acceleration were obtained through numerical analysis, and FFT processing was performed to analyze the frequency response function(FRF) characteristics. In particular, the location of vehicle eigenmodes and external excitation modes was clearly shown and analyzed. In the forced vibration model by external force, the behavior of the eigenmode in power spectrum and real and imaginary parts were also analyzed. The mode characteristics were also analyzed in each FRF. It was approximated by assuming total excitation force by considering the exciting frequency using impulse and sine wave forces, which can give the amplitude and frequencies. The response characteristics of forced oscillations having different mass, damping and stiffness have been systematically discussed.

Vibration-Based Monitoring of Prestress-Loss in PSC Girder Bridges (PSC 거더교의 진동기반 긴장력 손실 모니터링)

  • Kim, Jeong-Tae;Hong, Dong-Soo;Park, Jae-Hyung;Cho, Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • A vibration-based monitoring system is newly proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm is newly proposed to monitor the occurrence of prestress-loss by using the change in frequency responses. Secondly, a prestress-loss prediction algorithm is selected to estimate the extent of prestress-loss by using the change in natural frequencies. Finally, the feasibility of the proposed system is experimentally evaluated on a scaled PSC girder model for which acceleration responses were measured for several damage scenarios of prestress-loss.

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

Seismic Fragility Analysis of Multi-Modes Structures Considering Modal Contribution Factor (모드기여도를 고려한 복수모드구조물의 지진취약도분석)

  • 조양희;조성국
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • In the course of seismic probabilistic risk assessment(SPRA), seismic fragility analysis(SFA) is utilized as a tool to evaluate the actual seismic capacity of structures. This paper introduces a methodology of SFA and its evaluation procedures, especially focusing on the basic fragility variables. A new definition of the response spectrum shape factor as one of the most critical basic variables is suggested. The new factor is expressed as a term of linear algebraic sum using the modal contribution factor. The efficiency of new response spectrum shape factor is evaluated and validated to use in practice through the case study of the nuclear power plant structures. The case study results show that the proposed method can be effectively applicable to multi-mode structures with composite modal damping.