• Title/Summary/Keyword: 진동 내구성

Search Result 179, Processing Time 0.024 seconds

Study on Analysis of Heat Dissipation due to Shape of Motorcycle Disc Brake (모터사이클 디스크 브레이크 형상에 따른 방열해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.100-107
    • /
    • 2013
  • This study aims to improve the heat performance of motor cycle disk due to the number of holes by analyzing 6 kinds of disk models. This disk performance depends on the efficiency at emitting the heat. To raise the efficiency of heat emission, holes with circle or another configuration are made on disks to emit heat fast. The distribution of temperature, heat flux, deformation and stress are analyzed. As the number of holes on disk increases, the performance of heat emission is improved. Equivalent stress is decreased and durability is improved as the number of holes on disk increases. Though the number of holes on disk is increased, the performances of heat emission and durability do not become better. The optimal model can be found by comparing models each other through this analysis result. Through this study result, the configuration of motor cycle disk is designed with optimal heat emission and durability by comparing models.

Strength and Fatigue Analysis of Universal Joint (유니버설조인트의 강도 및 피로 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 2011
  • Chassis part in automotive body is affected by fatigue load at driving on the ground. Universal joint on this part is influenced extremely by the fatigue load. Fatigue life, damage and natural frequency are analyzed at universal joint under nonuniform fatigue load. The york part at universal joint is shown with the maximum equivalent stress and displacement of 60.755 MPa and 0.21086 mm as strength analysis. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and 'Sine Wave'. The damage at loading life of 'SAE transmission' is the least among 3 types. The frequency of damage in case of 'Sine Wave' is 0.7 with the least among 3 fatigue loading life types but this case brings the most possible damage as 80% at the average stress of 0. Natural vibration at this model is analyzed with the orders of 1'st to 5'th and maximum frequency is shown as 701.73 Hz at 5'th order. As the result of this study is applied by the universal joint on chassis part, the prevention on fatigue damage in automotive body and its durability are predicted.

Structural Strength Analysis due to Rib Thickness of Lower Arm (로워암 리브 두께에 따른 구조 강도 해석)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

Structural and Parametric Analysis for a Motorcycle Rear Frame using Co-rotational Shell Elements (Co-rotational Shell 요소를 이용한 모터사이클 후방프레임 구조 해석 및 설계변수해석)

  • Ryeom, Jewan;Kang, Seung-Hoon;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.209-216
    • /
    • 2020
  • In this paper, parametric structural analysis is presented utilizing the co-rotational(CR) shell analysis utilizing EDISON. CR shell analysis shows faster convergence than the commercial software, NASTRAN, does. The 1st natural frequency of the rear frame is obtained, which is close to that of the engine during high speed cruise. Three cases under two design variables are presented and analyzed. Gusset is shown to be more effective among those which feature the same weight change. The results presented in this paper will be applicable for further researches to improve the durability of a motorcycle rear frame.

Convergent Study on Fatigue Life Analysis of Driving Shaft in Jet Engine (제트엔진에서의 추진축의 피로 수명해석에 관한 융합연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.279-284
    • /
    • 2015
  • The vibration happened at the revolution movement of driving shaft driven with the thrust of airplane affects the great influence on the life of the shaft. And a great loss of life is caused when the fatigue damage is occurred at the driving shaft during revolution. The chattering is occurred at the driving shaft placed at the various revolution due to the aviation environment. Therefore, the part of the driving shaft concerned about the fatigue damage is grasped through the analysis study in this paper. So, the durability to prevent damage can be improved and it is possible to be grafted onto the convergence technique on the basis of a recent safe design and show the esthetic sense.

Receiving Characteristics of an Electronic Steering System according to the Change of the Coil Structure (전자식 조향 장치의 코일 구조 변화에 따른 수신 특성)

  • Park, Jae-Hong;Jeong, Gyu-Won;Ryu, Seung-Ryul;Kim, Eun-Ha;Choi, Han-Ol;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.868-874
    • /
    • 2011
  • In this paper, a new structure to improve the resolution of an inductive torque sensor is proposed. The new coupling structure and the change of number of turns for the receiving coil increase the resolution of the torque sensor. Because this torque sensor has non-contact points, it has no abrasion at the contact point, and is very durable. Also, the torque sensor has less variation due to vibration or strain, and it has a good EMC(Electromagnetic Compatibility) and thermal characteristics.

Structural Durability Analysis According to the Thickness of Bicycle Frame Tube (자전거 프레임 튜브 두께에 따른 구조적 내구성 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.122-129
    • /
    • 2012
  • This study investigates structural and vibration analyses according to the thickness of bicycle frame tube. The model of bicycle frame has the dimension as length of 862mm, width of 100mm and hight of 402.5mm. There are 3 kinds of models with tubes of top, down and seat at bicycle frame as thicknesses of 10, 15 and 20mm. The maximum displacement and stress occur at the center part of seat stay and at the installation part of rear wheel respectively. Maximum displacements become 0.031936, 0.029159 and 0.027984mm in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 20mm among 3 cases, maximum displacement becomes lowest. But maximum stresses become 10.019, 8.5492 and 9.2511MPa in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 15mm among 3 cases, maximum stress becomes lowest. There is no resonance at practical driving conditions and natural frequency remains almost unchanged along the change of thickness. In case of the displacement due to vibration mode, the displacement difference at thickness between 15mm and 20mm becomes 1/2 times than that between 10mm and 15mm. Design at bicycle frame tube becomes most economical and durable effectively in case of thickness of 15mm among 3 cases.

Durability of Corrugated Fiberboard Container for Fruit and Vegetables by Vibration Fatigue at Simulated Transportation Environment (모의 수송 환경에서의 청과물 골판지 상자의 진동 피로에 따른 내구성)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.89-94
    • /
    • 2005
  • The compression strength of corrugated fiberboard container for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about from 30 to 40 percent owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard container for packaging the fruit and vegetables under simulated transportation environment. The vibration test system was constructed to simulate the land transportation using truck. After the package with corrugated fiberboard container was vibrated by vibration test system at various experimental conditions, the compression test for the package was performed. The compression strength of corrugated fiberboard container decreased with loading weight and vibrating time. The multiple nonlinear regression equation for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibrating time. The influence of loading weight on the decreasing rate of corrugated fiberboard container was larger than other variables.

반도체 공정용 진공 펌프의 에너지 소비특성 분석

  • Sin, Jin-Hyeon;Gang, Sang-Baek;Go, Mun-Gyu;Jeong, Wan-Seop;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.334-334
    • /
    • 2010
  • 반도체 소자 제조 공정에 사용되는 공정 펌프는 전체 소요되는 에너지(소비전력)에 52%를 소비하고 있다. 이러한 이유 때문에 반도체 fab 내에서 에너지 절감을 논의할 때 항상 공정용 진공 펌프가 1 순위에 오를 수밖에 없는 것이다. 반도체 공정용 진공 펌프는 사용되어지는 공정에 따라 유지되는 진공도가 달라지고 이에 따라 소비전력과 투입되는 utility의 양이 바뀌게 되어 진공도와 공정에 따른 에너지 소비의 pattern이 다르다. 한국표준과학연구원 진공센터에서는 각 공정 대응용 펌프의 종류에 따라 배기속도, 도달진공도, 소비전력, 진동, 소음 등 기본 펌프 성능 평가, light gas인 helium에 대응하는 기본 성능평가를 실시하고 있다. 또한 부가적으로 soft/medium 공정용의 경우 저전력 mode의 소비전력의 진공도에 따르는 측정변수의 pattern을 측정/분석하고 있으며, harsh 공정용의 경우 50~300 slm의 유량 주입에 따른 내구성 특성을 monitoring하고 있다. 드라이펌프의 기본적인 평가 성능과 각 회사의 SPM (single pump monitoring system) 측정 변수인 온도, 배기구 압력 변화 등의 자체 진단 인자를 포함하여 반도체 공정에서 드라이 펌프의 운용에 필요한 냉각수, $N_2$, 등과 같은 utility의 사용량 및 온도변화 등을 측정하여 드라이 펌프의 에너지 소비 pattern을 분석하고자 한다.

  • PDF

Development of a Lifetime Test Bench for Robot Reducers for Fault Diagnosis and Failure Prognostics (고장 진단 및 예지가 가능한 로봇용 감속기 내구성능평가 장치 개발)

  • Shin, Ju Seong;Kim, Ju Hyun;Kim, Jong Geol;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.33-41
    • /
    • 2019
  • This study presents the development of a lifetime test bench for the strain wave reducer which is a precision gear reducer of the robot to realize fault diagnosis and failure prognostics. To this end, the lifetime test bench was designed to detect the vertical forward/reverse direction rotation load. Through the lifetime test bench, it is possible to apply the same load spectrum from robot working scenarios. We developed a data integration gateway for fault data collection. Through the development of dedicated software for fault diagnosis and failure prognostics, these data from vibration, noise and temperature sensors were collected and analyzed along with the operation of the lifetime evaluation.