• Title/Summary/Keyword: 진동분광학

Search Result 71, Processing Time 0.03 seconds

The Multiferroic Properties Study of YMn2-xFexO5 (x=0.00, 0.01) by Neutron Diffraction (고 분해능 중성자 회절 실험에 의한 YMn2-xFexO5 (x = 0.00, 0.01)의 다강체 특성 연구)

  • Kim, Dong-Hyun;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.183-187
    • /
    • 2007
  • Compounds of multiferroic materials $YMn_{2-x}Fe_xO_5$ (x = 0.00, 0.01) were prepared using the sol-gel method. The crystallographic, magnetic and electric properties are studied using x-ray diffraction (XRD), neutron diffraction, vibrating sample magnetometer (VSM) and physical property measurement system (PPMS). The crystalline structure of $YMn_2O_5$ was found to be orthorhombic (Pbam) at room temperature. The lattice constants of $YMn_2O_5$ were determined to be $a_0=7.275\;{\AA},\;b_0=8.487\;{\AA},\;c_0=5.674\;{\AA}$. The lattice constants not changed with Fe concentrations. Our data demonstrate the correlation of magnetic and electric properties in $YMn_2O_5$ materials.

Optical Constant Measurements of Highly Conductive Carbon Nanotube Films by Using Time-domain Terahertz Spectroscopy (시분해 테라파 분광학을 이용한 고전도성 탄소나노튜브 박막의 광학계수 측정)

  • Moon, J.Y.;Park, D.J.;Lim, J.H.;Rotermund, F.;Lee, S.;Ahn, Y.H.
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • We performed time-domain terahertz (THz) spectroscopy to determine optical constants of highly conductive carbon nanotube (CNT) films. The CNT films have been fabricated on a flexible plastic substrate by using spin-coating or vacuum filtration. We found that the transmission of THz waves can be controlled by manipulating the thickness of the films and by post-treatments. From amplitude and phase information of the transmitted THz waves, we obtain optical constants such as refractive indices and dielectric constants of the CNT films. The frequency dependent dielectric constants show good metallic behaviors, relevant to the Drude free electron models with high plasma frequencies. It is also found that the dielectric constants are higher for the acid-treated films. Finally, the frequency dependent dielectric constants which are free from substrate effects have been demonstrated by using CNT films deposited on cellulose membranes.

The Research about the Correlation Between the Spontaneous Polarization of LuFe2O4 and Behavior of Iron by Mössbauer (뫼스바우어 분광법을 이용한 LuFe2O4의 자발분극과 철 이온의 거동과의 상관관계에 대한 연구)

  • Bang, Bong-Kyu;Kim, Chul-Sung;Kim, Sung-Baek;Cheong, S.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.10-13
    • /
    • 2007
  • Single crystalline, $LuFe_2O_4$, was grown by the floating zone method. The crystal structure was a two-dimensional layered-type rhombohedral($R\={3}mh$) structure, with an $a_0=3.440(2)\;{\AA}\;and\;a\;c_0=25.263(2)\;{\AA}$. The magnetic $N\'{e}el$ temperature($T_N$) was determined to be 250 K. The $M\"{o}ssbauer$ spectrum at 12 K was fitted with four sextet sets which was resulted from the crystal structure. The spectrm at room temperature consisted of three singlets and a doublet with the electric quadrupole splitting. The isomer shift($\delta$) value of the singlet was $0.20{\pm}0.01mm/s$ relative to the Fe metal indicating the $Fe^{3+}$ valence state, and the value of the doublet was $0.70{\pm}0.01mm/s$ indicating $Fe^{2+}$. The $M\"{o}ssbauer$ absorption area ratio between $Fe^{3+}$ and $Fe^{2+}$ at room temperature was 1:1. The doublet phase of spectra gradually disappears by up to 360 K. At 360 K, the spectrum shows the singlet phase. We suggested that the spontaneous polarization effect of $LuFe_2O_4$ was caused by the change of iron behavior.

Studies of Crystallographic and Magnetic Properties in Fe0.9Zn0.1Cr2S4 (Fe0.9Zn0.1Cr2S4의 결정학적 및 자기적 성질에 관한 연구)

  • Bae, Sung-Hwan;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.34-37
    • /
    • 2007
  • The crystallographic and magnetic properties of $Fe_{0.9}Zn_{0.1}Cr_2S_4$ have been studied by X-ray diffractometer(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy measurement. The crystal structure was determined by the normal cubic spinel of space group Fd3m and the lattice constant was $a_0=9.9967\;{\AA}$. The specific phenomenon which looks like cusp pattern at 77 K was observed in magnetization corves(ZFC : Zero Field Cooling) under 100 Oe applied field. $N\acute{e}el$ temperature($T_N$) was determined to be 153 K by VSM and $M\"{o}ssbauer$ spectra. The asymmetric 8-line profile has been observed at 4.2 K, which was attributed by the colossal electric quadupole interaction(${\Delta}E_Q$), ${\Delta}E_Q$ has 2.22 mm/s at 4.2 K. The ${\Delta}E_Q$ abruptly decreases around 77 K and then it disappears above 77 K with diminishing of 8-line pattern. The isomer shift $\delta$ at room temperature is 0.48 mm/s relative to Fe metal, which means that the charge state of Fe ions is ferrous in character.

Mossbauer Study Of $Co{1+x}Fe{2-2x}Ti_xO_4$ ferrite Powders (Mossbauer 분광법에 의한 $Co{1+x}Fe{2-2x}Ti_xO_4$ 페라이트 분말의 연구)

  • 채광표;정성근;김원기;이성호;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.220-224
    • /
    • 2000
  • Ultra-fine $Co_{1+x}$F $e_{2-}$2x/ $Ti_{x}$ $O_4$ferrite powders have been prepared by the sol-gel method. The crystallographic and magnetic properties of the sample have been investigated by means of x-ray diffraction, Mossbauer spetroscopy and vibrating sample magnetometry. The formation of nano crystallized particles is confirmed. The x-ray diffractions of all samples with various compositions clearly indicate the presence of spinel structure. The Mossbauer spectra could be fitted as the superposition of two sextets due to F $e^{3+}$ A-site and B-site. The IS and QS values nearly constant with substituted Co-Ti contents, whereas $H_{hf}$ of B-site decreases with increasing Co-Ti substitution in $Co_{1+x}$F $e_{2-}$2x/ $Ti_{x}$ $O_4$. The magnetic behaviour of powders shows that the saturation magnetization and the coercivity decrease with increasing x in $Co_{1+x}$F $e_{2-}$2x/ $Ti_{x}$ $O_4$.$.X>.

  • PDF

Crystallograpbic and Magnetic Properties of $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$의 결정학적 및 자기적 특성 연구)

  • 김우철;김삼진;김철성;이승화
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.136-142
    • /
    • 1999
  • $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ has been studied with x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometer. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.403{\AA}$. Mossbauer spectra of have been taken at various temperatures ranging from 12 K to 665 K. as the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magenetic hyperfine fields at various iron sites. Also, by using binomial distribution equation we obtained the hyperfine fields of tetrahedral[A] and octahedral sites[B], $H_{hf}(A)=470\;kOe,\; H_{hf}(B0)=495 \;kOe,\; H_{hf}(B1)=485\;kOe, \;H_{hf}(B2)=453\;kOe,\; H_{hf}(B3)=424\;kOe,\; H_{hf}(B4)=390\;kOe,\; H_{hf}(Bavr)=451\;kOe$ respectively at room temperature. The isomer shift indicates that the iron ions are ferric at tetrahedral[A] and octahedral sites[B], respectively. The Neel temperature is determined to be $T_N=665\;K$. The results of the VSM data gave the magnetic moment and coercivity values of $M_S=66\; emu/g\;and\;H_C=36\;Oe$.

  • PDF

Performance Evaluation of Snow Detection Using Himawari-8 AHI Data (Himawari-8 AHI 적설 탐지의 성능 평가)

  • Jin, Donghyun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Eunkyung;Han, Hyeon-gyeong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1025-1032
    • /
    • 2018
  • Snow Cover is a form of precipitation that is defined by snow on the surface and is the single largest component of the cryosphere that plays an important role in maintaining the energy balance between the earth's surface and the atmosphere. It affects the regulation of the Earth's surface temperature. However, since snow cover is mainly distributed in area where human access is difficult, snow cover detection using satellites is actively performed, and snow cover detection in forest area is an important process as well as distinguishing between cloud and snow. In this study, we applied the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to the geostationary satellites for the snow detection of forest area in existing polar orbit satellites. On the rest of the forest area, the snow cover detection using $R_{1.61{\mu}m}$ anomaly technique and NDSI was performed. As a result of the indirect validation using the snow cover data and the Visible Infrared Imaging Radiometer (VIIRS) snow cover data, the probability of detection (POD) was 99.95 % and the False Alarm Ratio (FAR) was 16.63 %. We also performed qualitative validation using the Himawari-8 Advanced Himawari Imager (AHI) RGB image. The result showed that the areas detected by the VIIRS Snow Cover miss pixel are mixed with the area detected by the research false pixel.

Evaluation of titanium surface properties by $Nd:YVO_4$ laser irradiation: pilot study ($Nd:YVO_4$ 레이저 조사에 따른 티타늄의 표면특성 평가: 예비 연구)

  • Kim, Ae-Ra;Park, Ji-Yoon;Kim, Yeon;Jun, Sei-Won;Seo, Yoon-Jeong;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.167-174
    • /
    • 2013
  • Purpose: This study was conducted to evaluate the roughness and surface alternations of three differently blasted titanium discs treated by $Nd:YVO_4$ Laser irradiation in different conditions. Materials and methods: Thirty commercially pure titanium discs were prepared and divided into three groups. Each group was consisted of 10 samples and blasted by $ZrO_2$ (zirconium dioxide), $Al_2O_3$ (aluminum oxide), and RBM (resorbable blasted media). All the samples were degreased by ultrasonic cleaner afterward. Nine different conditions were established by changing scanning speed (100, 300, 500 mm/s) and repetition rate (5, 15, 35 kHz) of $Nd:YVO_4$ Laser (Laser Pro D-20, Laserval $Korea^{(R)}$, Seoul, South Korea). After laser irradiation, a scanning electron microscope, X-ray diffraction analysis, energy dispersive X-ray spectroscopic analysis, and surface roughness analysis were used to assess the roughness and surface alternations of the samples. Results: According to a scanning electron microscope (SEM), titanium discs treated with laser irradiation showed characteristic patterns in contrast to the control which showed irregular patterns. According to the X-ray diffraction analysis, only $Al_2O_3$ group showed its own peak. The oxidation tendency and surface roughness of titanium were similar to the control in the energy dispersive X-ray spectroscopic analysis. The surface roughness was inversely proportional to the scanning speed, whereas proportional to the repetition rate of $Nd:YVO_4$. Conclusion: The surface microstructures and roughness of the test discs were modified by the radiation of $Nd:YVO_4$ laser. Therefore, laser irradiation could be considered one of the methods to modify implant surfaces for the enhancement of osseointegration.

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.