• Title/Summary/Keyword: 진동발전기

Search Result 333, Processing Time 0.024 seconds

Structural Vibration Analyses of a 5 MW Offshore Wind Turbine with Substructure (하부구조를 포함한 5MW급 천해용 해상 풍력발전기 구조진동해석)

  • Kim, Dong-Hwan;Kim, Dong-Hyun;Kim, Myung-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.607-613
    • /
    • 2011
  • In this study, structural vibration analyses for a 5MW offshore wind wind-turbine model have been performed for different substructure models. The efficient equivalent modeling method based on computational multi-body dynamics are applied to the finite element models of the present offshore wind turbines. Monopile and tri-pod substructure types of the typical offshore wind-turbine are considered herein. Detailed finite element modeling concepts and boundary conditions are described and the comparison results for previous analyses are presented in order to show the verification of the present numerical approach. Campbell diagrams are also present to investigate the rotational resonance characteristics of the offshore wind-turbines with different substructures.

  • PDF

Vibration Analysis of the End-winding of Large Generator for Fossil Power Plant under Electromagnetic Excitation (대형 화력 발전용 발전기 권선단부의 전자기력에 의한 진동 해석)

  • 김철홍;주영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.350-355
    • /
    • 2003
  • This paper presents results of vibration analysis of a end-winding of large generator for fossil power plant. A finite element analysis using a commercial S/W is performed to calculate alternating electromagnetic forces, mainly of 120㎐ in 60㎐ machines, acting on the end-winding, and then to calculate forced response of the end-winding under electromagnetic forces. Also, this paper presents analytical and experimental modal analysis results of generator end-winding to validate FE model. We calculated forced response of end-winding on 120㎐, double rotating frequency. These results will be used to evaluate structural reliability of end-winding and applied to update model.

  • PDF

The Fundamental Study for Torsional Vibration of Diesel Generator Set connected Electric Power Grids (전력망에 연결된 디젤 발전기 세트의 비틀림 진동에 대한 기초 연구)

  • Kim, Hyujung;Yun, Hyunwoo;Barro, Ronald D.;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.294-297
    • /
    • 2014
  • A Shipboard power system consists of three or four diesel generator sets connected to a grid. In case of dual fuel diesel generator sets employed LNG ship as a prime mover, large amounts of electricity are required for electric propulsion, auxiliary machinery and accommodation facilities. The electrical connection between generators through a network, torsional vibration can lead power swings. In this paper, the influence on the network by the torsional vibration of diesel generator sets in grid operation were studied. The torsional vibration characteristics were investigated and analyzed through theoretical analysis and the vibration measurement and the results were presented.

  • PDF

Vibration Characteristics for 11.4 MW Class Marine Generator using Rigid Support (고정지지를 갖는 11.4 MW급 선박용 발전기의 진동 특성)

  • Dao, Vuong Quang;Barro, Ronald D.;Kim, Hyojung;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.585-588
    • /
    • 2013
  • Electric motor with reduction gear systems are being adopted recently as main propulsion on the special-purposed ships. These specialized ships or offshore vessels require higher power rating generators for propulsion and accommodation power supply. This study investigated the cause of exciter components failure in the view of excessive vibration, force or abnormal ship motion in service. Countermeasures are proposed to address the exciter component failure. A 1.4 MW class dual-fuel engine generator using rigid foundation for a LNG carrier was used as research model.

  • PDF

Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator (750kW 풍력발전기 타워 구조의 진동 특성)

  • Kim, Seock-Hyun;Nam, Y.S.;Eun, Sung-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.429-434
    • /
    • 2004
  • Vibration response of the tower structure of a 750kW wind turbine generator is investigated by measurement and analysis. Acceleration response of the tower under various operation condition is monitored in real time by vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the wind turbine tower.

  • PDF

Multi Degree of Freedom Linear Electric Generator for Structural Concerns and Electric Generation Improvement of the Linear Electric Generator in a Vehicle Suspension (차량 현가장치 선형 발전기 구조 검토 및 발전량 향상을 위한 다자유도 선형 발전기)

  • Choi, Ji-Hyun;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5452-5459
    • /
    • 2014
  • A resonance linear electric generator in a vehicle suspension is a system that performs self-electric generation by collecting the vibration energy when a vehicle runs on a road, and takes the resonance phenomenon to derive large electric generation from slight road surface vibrations. In this paper, the motions of an armature in three different electric generator structures were simulated and the actual generation quantity was calculated and compared with these results. Furthermore, when the vehicle runs on the road, the design improvement for a multi-degree of freedom electric generator was conducted to make the resonance respond to various excitation frequencies, and the change in the resonance points and generation quantity were identified.