• 제목/요약/키워드: 진동기반

검색결과 933건 처리시간 0.034초

마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구 (Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System)

  • 강경수;박지훈
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

수직하중 계측을 위한 FBG센서 기반 스마트 교량 내진장치의 개발 (Development of Smart Seismic Device Using FBG Sensor for Measuring Vertical Load)

  • 장성진;김남식;백준호
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1089-1098
    • /
    • 2012
  • A faulting could be occurred at the end of deck by unexpected loads to bridge bearing after a bridge completion. Serviceability of bridges could be impaired by the faulting which is caused structural damage. Therefore, smart bridge bearing which can continuously observe the supporting points is needed. Some of bridge bearings have been developed for measuring vertical load and vertical displacement by installing sensors in the bearing. In those systems, however it is not easy to be replaced with new sensors when repairs are needed. In this study, the smart bridge bearing of which sensors can be replaced has been developed to overcome such a problem. In this study, strain signals were used for measuring both of vertical displacements and loads. FBG sensors(fiber optic Bragg-grating sensors) have been used for measurement of the strain signals since it is prevented from electronic noise by mediating light, enables the simplification of the measuring cable by multiple measurement, and is easy to place by lightweight and small size. The possibility of use was reviewed for smart bridge bearing based on FBG sensors through tests.

간단한 양자계와 빛의 상호작용

  • 김준형;장보영;신석민
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.132-144
    • /
    • 2017
  • 현재, 빛을 이용한 화학 연구가 활발히 진행되고 있고 이러한 연구는 양자역학을 기반으로 화학에서 상당히 중요한 부분을 차지하고 있다. 또한 컴퓨터의 발전에 따라 여러 계산 모델들이 개발되고 있다. 본 논문에서는 회전파 근사(Rotating Wave Approximation, RWA)를 통해 라비 진동을 이론적으로 확인하고, 가장 간단한 연속파 레이저와 두 에너지 준위에서 시작하여 레이저 펄스와 두 에너지 준위, 레이저 펄스와 이원자분자인 $Na_2$ 분자의 두 전자에너지 퍼텐셜 준위, 그리고 실제 시간 밀도 범함수 이론(Real-Time Time Dependent Density Functional Theory, RT-TDDFT)이란 제일원리계산을 통해 연속파 레이저와 $H_2$ 분자와 $C_2H_4$ 분자에서까지 관찰하였다. 이 연구를 통해 공명 전이의 경우 펄스의 면적이 ${\pi}$의 홀수 배일 때 완전한 입자수 전이가 일어나는 펄스 면적 정리를 확인할 수 있었고, 이원자분자인 $Na_2$의 경우엔 펄스의 지속시간도 입자수 전이에 영향을 미친다는 것을 확인하였다. 더 나아가 $H_2$ 분자와 $C_2H_4$ 분자에서는 RT-TDDFT 계산을 통해 라비 진동을 확인할 수 있었고, 두 종류의 기저함수간의 대조를 통해 기저함수 선택의 중요성을 알아보았고, 가장 중요하게는 레이저를 잘 조작하면 입자를 원하는 상태로 들뜨게 할 수 있다는 것이란 결론을 얻게 되었다.

  • PDF

모듈 구조 데이터베이스 기반의 터보기기 결함 진단용 하이브리드 퍼지 전문가 시스템 (A Hybrid Fuzzy Expert System Based on Module-type Database for Fault Diagnosis of Turbomachinery)

  • 백두진;김승종;김창호;곽현덕;장건희;이용복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.303-312
    • /
    • 2003
  • This paper suggests a fuzzy expert system for fault diagnosis of rotating machinery, based on modulated databases. In the proposed system, alarm and trip levels are set based on ISO, considering operating condition, machinery type and maintenance history. Input signals for diagnosis, such as sub- and super-harmonic components of vibration and mean value, are normalized from 0 to 1 under the threshold level and otherwise equal to one so that chronic faults slightly below the threshold level can be monitored. The database for diagnosis consists of two modules: the well-known Sohre's chart module and if-then type rules. The Sohre's chart is utilized for the most common problems of high-speed turbomachinery, while the rule-based module, which was collected from many papers and reports, is for diagnosing peculiar faults according to the type of machinery. To infer the results from two modules, a fuzzy operation of Yager sum was adopted. Using a simulator constructed in laboratory, experimental verification was performed for the cases of resonance and housing looseness which were intended. The experimental results show that the proposed fuzzy expert system has feasibility in practical diagnosis of rotating machinery.

  • PDF

탄성 케이블로 구동되는 조작기 링크의 외란 관측기 기반 슬라이딩모드 제어 (Disturbance Observer Based Sliding Mode Control for Link of Manipulator Driven by Elastic Cable)

  • 강민식
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.949-958
    • /
    • 2012
  • Position tracking control of a link of a slave manipulator which needed to track the corresponding link of a master manipulator was addressed in this paper. Since driving torque from motor is transmitted through a set of flexible cable to link, the motion control system is modeled by a two-mass model connected with elastic coupling which has finite stiffness. Relative vibration of two-mass resonant system is a serious problem to operate manipulator. This paper proposed sliding mode control to reduce resonant vibration and fine position tracking control. Also, a pseudo-sliding mode control which uses a saturation function instead of a signum function was discussed and showed that the pseudo-sliding mode control can improve disturbance regulation performance as well as guarantees fine command tracking without chattering which is an inherent drawback of basic sliding mode control. In addition, a disturbance observer based sliding mode control has been suggested to improve disturbance regulation performance. The feasibility of the proposed control design was verified along with some simulation results.

로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구 (CAE-based DFSS Study for Road Noise Reduction)

  • 권우성;유봉준;김병훈;김인동
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

수력발전소 정비변수 및 회전체 통합관리시스템 개발 (Development of an Integrated Management System for Maintenance Parameters and Rotary Machine of Hydro-power Plant)

  • 신성환;박진호;윤두병;손기성
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.574-581
    • /
    • 2012
  • Condition-based maintenance(CBM) has been used as a useful concept for optimizing maintenance plan and decreasing maintenance cost in several kinds of plant sites. This study introduced an example that developed an integrated management system for maintenance parameters and hydraulic turbine of hydro-power plant in order to improve its maintenance strategy as applying CBM techinique. The integrated management system consists of three parts. One is a hardware part including PDA inspection system and several kind of precision measuring instruments. Another is a vibration monitoring system on hydraulic turbine. The other is a software part that takes charge of making hierarchy tree of maintenance parameters and their inspection route, managing accumulated database, assessing health condition of components, and supporting interface with other enterprise management system. The system has been installed at Chuncheon hydro-power plant for test and demonstration. It is expected that the system can contribute database construction for diagnostics and prognostics on facility health condition and systematic accumulation of know-how on operation and maintenance of plant.

동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구 (Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load)

  • 김현기;김의영;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF

유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정 (Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method)

  • 김상범;이완수;윤정방
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

이중 공동의 고유 주파수 최대/최소화를 위한 위상 최적화 기반 격벽 설계 (Topology-optimization-based Partition Design for Maximizing or Minimizing the Eigenfrequency of a Double Cavity)

  • 이진우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1118-1127
    • /
    • 2008
  • The position and size of holes in the partition of a double cavity are known to strongly affect the eigenfrequency of the longitudinal eigenmodes of the double cavity. To maximize or minimize the eigenfrequency of the hole-partitioned double cavity, two acoustical topology optimization problems are formulated and solved. While two sub-cavities are filled with air, a partition between them is assumed to consist of sub-partitions of variable acoustical properties. One design variable is assigned to each sub-partition, whose material properties are interpolated as those of an intermediate material between air and a rigid body. The penalty parameter of the used interpolation function is adjusted to obtain a distinct air and rigid body distribution at the converged stage in each acoustical topology optimization problem. A special attention is paid to the selection of initial values of design variables to obtain solutions as close to global optimum and symmetric as possible. To show numerical characteristics of these optimization problems, the formulated problems are first solved for the one-dimensional partition design domain and then for the two-dimensional partition design domain.