• 제목/요약/키워드: 진단 보조시스템

검색결과 108건 처리시간 0.025초

퍼지 ART 알고리즘을 이용한 한방 자가 진단 및 학습 시스템 (Self Health Diagnosis and Learning System of Oriental Medicine Using Fuzzy ART Algorithm)

  • 황병주;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.387-392
    • /
    • 2007
  • 본 논문에서는 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 스스로 자신의 건강 상태를 쉽게 파악하고, 조금씩 진화하는 질병 바이러스에 따른 증상의 변화를 진단할 수 있는 퍼지 ART 알고리즘을 이용한 한방 자가 진단 및 학습 시스템을 제안한다. 제안된 한방 자가 진단 및 학습 시스템은 72가지 한방 질병과 각 질병에 대한 증상을 분석하여 데이터베이스로 구축하고 구축된 데이터베이스 정보를 기반으로 퍼지 ART 알고리즘을 적용하여 사용자의 질병을 도출한다. 본 논문에서는 사용자가 자신의 대표 증상을 제시하면 해당 증상을 포함하는 질병들을 도출한다. 도출된 질병들의 세부 증상들을 사용자가 입력 벡터로 제시하면 퍼지 ART 알고리즘을 적용하여 세부 증상에 대한 질병들을 클러스터링한 후, 세부 증상에 대한 질병의 소속 정도를 제공한다. 본 논문에서 제시한 시스템을 한의학 전문의가 분석한 결과, 본 논문에서 제사한 시스템이 한방 질병의 보조 진단으로서의 가능성을 확인하였다.

  • PDF

스웨덴 장애인 보조기구 제공 시스템에 대한 소고 (A Report of the Assistive Technology Service Operating System for the Disabled in Sweden)

  • 최영순
    • 재활복지
    • /
    • 제18권4호
    • /
    • pp.25-45
    • /
    • 2014
  • 본 연구에서는 스웨덴의 장애인 보조기구 제공 시스템을 검토하고, 우리나라의 장애인 보장구건강보험 급여정책 대안 마련을 위한 기초자료로서 제공하고자 하였다. 스웨덴에서는 장애인구의 약 10%가 보조기구를 사용하고 있는데, 보조기구 제공을 위해서 중앙정부, 지역정부(란스팅 21개)와 지방정부(콤뮨 290개)의 역할을 명확하게 구분하여 효율적이고 체계적으로 운영하고 있다. 보건사회부 산하의 보건복지국가위원회에서는 지식기반 지침을 개발하고, 장애인정책개발국에서는 장애인 보조기구 정책을 모니터링하며, 장애인 보조기구기술연구소에서는 보조기구 개발연구 및 평가와 보조기구 전시장을 운영한다. 또한, 지역정부(란스팅)와 지방정부(콤뮨)는 보조기구 대여 및 추후관리를 담당하는데, 지역정부(란스팅)별로 보조기구센터를 운영하며 작업치료사, 물리치료사, 심리치료사, 간호사가 처방을 담당한다. 특기할 점은 장애인 보조기구를 무료로 대여하고 추후 관리를 하고 있다는 것과 사용이 끝난 보조기구는 회수하여 재활용을 하고 있다는 것이다. 또한, 처방자격자가 장애진단 담당의(우리나라 시스템)가 아니라 지역 및 지방정부에서 고용한 전문 인력이므로 대상자의 상태를 잘 파악하여 처방을 하고 추후 관리가 가능하다는 점이다.

반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현 (Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System)

  • 박순호;최우근;최경열;권상혁
    • 한국항해항만학회지
    • /
    • 제46권6호
    • /
    • pp.562-569
    • /
    • 2022
  • 기존 운항선박에 적용되어 있는 알람 모니터링 기술은 온도, 압력 등의 데이터 항목을 AMS(Alarm Monitoring System)으로 관리하고 해당 센싱 데이터가 정상 수준 범위를 초과할 경우만 선원에게 알람을 제공한다. 또한 기존 선박의 정비는 PMS(Planned Maintenance System)를 따른다. 이는 장비로부터 측정된 센싱 데이터가 설정범위 이상으로 측정되어 이에 따른 알람을 통해 정비하거나, 대상 기기의 고장 유무에 관계없이 일정 시간 사용 후 해당 부품을 사전에 교체하는 방식으로 운영되고 있다. 하지만 선박 기관운영의 신뢰성과 운항 안전성을 확보하기 위해서는 실시간 상태 모니터링 데이터 기반의 사전적 진단 및 예측이 가능해야 한다. 그러기 위해서 실선 데이터를 종합적으로측정하여 데이터베이스화 하고 이를 선박의 보조기기와 배관의 상태기반 예지보전을 위한 상태 진단 모니터링 시스템을 구현하고자 한다. 특히 반응형 웹 기반으로 선박의 보조기기와 배관 상태 정보를 관리할 수 있도록 하였으며, 선내 개인용 컴퓨터(Personal Computer, PC)에서 보는 용도뿐만 아니라 스마트폰 등 다양한 모바일 기기의 접근 및 활용이 가능하도록 화면과 해상도에 맞춰 최적화된 상태 관리가 가능하도록 하여 업데이트 비용이 적게 들며, 관리 방법도 쉽다. 본 논문에서는 자율운항선박 핵심 기술인 상태기반정비(Condition Based Management, CBM) 기술력을 확보하기 위해 선박의 보조기기 중 펌프와 청정기, 그리고 배관 중 해수 및 스팀 배관의 상태 진단 모니터링을 통해 이상 현상을 파악하고, 이를 통해 융합 분석할 수 있도록 선박 보조기기 및 배관의 성능 진단 및 고장 예측에 활용하여 예방정비 의사결정을 지원하고자 한다.

퍼지논리를 이용한 급성복통과 관련된 질환 진단시스템의 설계 (A Design of the Diagnosis System for Diseases associated with Acute Abdominal Pain Using Fuzzy Logic)

  • 현우석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.68-71
    • /
    • 2002
  • 의사들은 환자들의 건강 상태와 관련하여 다양한 유형의 정보들을 수집하고 분석하여 개별적인 환자들의 진단을 내리게 된다. 의사들이 한 명의 환자와 관련된 다양한 정보로부터 질환을 결정 내리기까지에는 여러 단계에서 다양한 의사결정이 필요하며 매우 복잡한 과정을 거치게 된다. 그러므로 의사들에게 또는 환자들에게 보조적인 도움을 주고자 많은 의료진단 시스템들이 개발되었다. 현재까지 개발된 대부분의 의료 진단시스템들은 특정한 의사의 경험이나 한 유형의 질환에 고정되어 있다. 그래서 환자들이 급성복통과 같은 여러 가지 유형의 질환에 관련되어 있는 증상을 호소할 때 의사들이 적절한 의사결정을 내리기가 쉽지 않다. 본 논문에서는 급성복통과 관련된 여러 가지 유형의 질환을 진단할 수 있는 시스템을 퍼지 논리를 이용하여 설계하고 구현해 본다.

  • PDF

조직세포의 자동화된 암 진단을 위한 병리지식 기반의 온톨로지 진단프레임워크에 관한 연구 (A study for ontology-diagnosis framework research based on pathology-knowledge for automated cancer diagnosis of biopsy samples)

  • 송재원;이주홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1051-1053
    • /
    • 2011
  • 본 논문은 병리진단지식을 활용한 조직세포 영상의 암진단을 위한 온톨로지 기반의 진단 프레임워크를 제안한다. 병리진단 분야는 환자로부터 획득한 조직셈플을 전자현미경을 이용하여 조직의 구조적 특징과 형태학적특징을 기반으로 진단을 한다. 이러한 형태의 진단은 의사의 주관적인 경험에 많이 의존하기 때문에 같은 병증에 대해서도 의사들마다 다른 진단을 하게 된다. 최근 이러한 주관적인 경험에 의한 오진을 줄이고자 주어진 조직세포 영상의 형태학적 특징들의 정량적인 수치들을 이용하는 컴퓨터 보조진단(CAD)시스템들이 많이 이용되고 있다. 그러나 이러한 진단 시스템의 요소기법들은 하나의 병증만을 진단하는데 활용되기 때문에 구성기술의 재사용성은 매우 떨어진다. 따라서 본 논문은 요소기술들의 재활용성을 높이고, 객관화된 병리진단을 위한 온톨로지 기반의 진단 프레임워크를 제시한다.

질감분석을 이용한 폐결핵의 자동진단 (Computer-Aided Diagnosis for Pulmonary Tuberculosis using Texture Features Analysis in Digital Chest Radiography)

  • 김대훈;고성진;강세식;김정훈;김창수
    • 한국콘텐츠학회논문지
    • /
    • 제11권11호
    • /
    • pp.185-193
    • /
    • 2011
  • 결핵은 환자를 미리 발견하여 치료함으로서, 질병의 전파를 차단하여 새로운 감염자가 발생을 최소화하고, 결핵을 조기에 예방 및 진단하는 것이 중요하다. 그러므로 현재 의학에서는 디지털 의료영상을 활용하여 질병진단의 보조 수단으로서 컴퓨터자동진단시스템이 응용되고 있다. 본 연구에서 주성분 분석(PCA)과 질감분석(Texture features)의 알고리즘을 이용하여 결핵의 질병을 자동으로 판별 및 인식하였으며, 그 기준에 따라 디지털 흉부 방사선영상에서 컴퓨터자동진단의 실용화를 위한 선행연구를 하였다. 실험결과는 주성분분석을 이용한 병변 인식률은 전문의의 질병에 대한 판독률보다 낮게 나타났지만, 질감분석의 인식률은 전문의 판독결과보다 높은 병변 인식률을 나타내었다. 그러므로 제안하는 알고리즘을 활용한 컴퓨터자동진단시스템은 임상의사에게 부가적인 보조 수단으로서 예비판독 단계의 정보를 제공하여 질병의 조기진단 및 예방이 가능할 것으로 사료된다.

딥러닝을 기반으로 한 CAD 시스템의 갑상샘 질환의 진단 유용성 (Evaluation of Diagnostic Usefulness of Thyroid Lesions of Deep Learning-based CAD System)

  • 강채원;이효영
    • 한국방사선학회논문지
    • /
    • 제18권5호
    • /
    • pp.551-556
    • /
    • 2024
  • 본 연구는 인공지능 기반 컴퓨터 진단 보조 시스템(CAD)인 S-DetectTM를 통해 진단된 갑상샘 병변과 세침흡인 검사(FNAB) 결과를 비교하여 분석하고, 진단의 일치도와 정확도를 평가하고자 한다. 2023년 5월부터 2023년 9월까지 경남 소재 N 병원 내과에서 60명의 환자를 대상으로 후향적 연구를 수행하였다. S-DetectTM를 사용하여 갑상샘 결절의 초음파 소견과 악성 위험도를 분석하고, 이를 세침흡인 검사 결과와 비교하여 정확도를 확인하였다. S-Detect 방법과 세침흡인 검사 방법 간의 민감도, 특이도, 정확도, 양성예측도 및 음성 예측도를 분석하였으며, 두 방법 간의 진단 일치도를 Kappa 분석을 통해 확인하였다. S-Detect 분석결과는 민감도 90.5%, 특이도 83.2%, 정확도 88.3%, 양성 예측도 80.7%, 음성 예측도 92.7%로 나타났다. 또한, S-Detect 방법과 세침흡인검사 방법 간의 진단 일치도 분석 결과, Kappa 값이 0.719(p<0.05)로 높게 나타났으며, 두 방법 간에 유사한 일치도를 보였다. 따라서, 인공지능 기반 컴퓨터 진단 보조 시스템(CAD)인 S-Detect는 갑상샘 병변에서 악성 결절과 양성 결절을 구별하는데 유용하며, 갑상선 세침흡인 검사 전에 적절히 활용하면 불필요한 조직 검사를 줄일 수 있을 것으로 생각한다.

ART2 기반 지능형 자가 건강 진단 시스템의 개발 (Developing an Intelligent Self-Health Pre-Diagnosing System based on ART2)

  • 김광백
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.11-18
    • /
    • 2014
  • 본 논문에서는 ART2 알고리즘을 이용하여 질병을 도출하고 증상의 차이를 구분하기 위해서 애매한 증상의 정도를 퍼지 추론 방법에 적용하여 더욱더 정확한 질병 상세를 도출할 수 있는 개선된 자가진단 시스템을 제시한다. 본 논문에서 제안한 방법을 전문의에게 분석을 의뢰한 결과, 본 논문에서 제안된 자가진단 시스템 방법이 이전의 방법보다, 지능형 자가 보조 진단 시스템으로서 사용자에게 더욱 효과적인 도움을 줄 수 있는 가능성을 확인하였다.

다중 트레이닝 기법을 이용한 MASK R-CNN의 초음파 DDH 각도 측정 진단 시스템 연구 (A Study on a Mask R-CNN-Based Diagnostic System Measuring DDH Angles on Ultrasound Scans)

  • 황석민;이시욱;이종하
    • 융합신호처리학회논문지
    • /
    • 제21권4호
    • /
    • pp.183-194
    • /
    • 2020
  • 최근 영유아 성장기에 발생하는 고관절 이형성증(Developmental Dysplasia of Hip, DDH)의 숫자가 늘어나고 있다. DDH는 영유아 성장을 방해하고 다른 부작용도 많이 발생시키기 때문에 최대한 조기에 발견하여 치료해야 한다. 최근 들어 Convolutional Neural Networks (CNN) 및 개선된 Resnet50을 활용한 머신러닝 기법이 초음파 영상 분석에 많이 활용되고 있다. 연구 결과를 보면 컴퓨터 보조 이미지 분석이 의료현장에서 객관성과 생산성을 크게 향상시키고 있다. 본 연구의 결과는 정형외과에서의 난제인 초음파 영상을 통한 DDH 컴퓨터 보조 진단 알고리즘에도 충분히 활용될 수 있다는 것을 보여주고 있다. 본 논문에서는 CNN을 활용하여 DDH를 자동으로 측정하고 진단할 수 있는 컴퓨터 보조 진단 알고리즘을 제안하였다. DDH 측정을 위해 유아 고관절의 정상/비정상 판독을 위해 Acetabulum-Femoral head의 angle을 자동으로 계산하였으며 기존 영상을 딥 러닝하여 진단을 자동으로 하는 알고리즘을 설계하였다. 실험 결과 의사와 비교하여 진단의 속도와 정확도가 향상된다는 것을 확인하였다.