• Title/Summary/Keyword: 진단분류

Search Result 1,885, Processing Time 0.025 seconds

Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier (PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단)

  • Lee Dae-Jong;Park Jang-Hwan;Chun Myung-Geurl
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.444-447
    • /
    • 2005
  • 본 논문에서는, 주성분분석기법과 다층신경망에 기반을 둔 유도전동기의 고장진단기법을 제안하고자 한다. 입력의 수가 많을 경우 다층신경망만을 이용하여 분류하는 데는 한계가 있다. 이러한 문제점을 해결하기 위해 주성분분석기법에 의해 입력특징의 수를 축약한 후, 비선형분류기인 다층신경망을 적용하였다. 또한, 주성분 분석기법에 추출된 특징벡터가 고장상태별로 비선형성특성을 보일 경우 기존의 거리척도 기반에 의한 분류방법으로는 정확한 진단을 하는데 어려움이 있다. 이를 위해 비선형 분류기인 MLP를 적용함으로써 효과적인 고장진단을 하고자 한다. 제안된 기법은 다양한 실험을 통해 기존의 선형분류기에 비해 우수한 결과를 보임을 나타내고자 한다.

  • PDF

Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier (PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단)

  • Park, Sung-Moo;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.119-123
    • /
    • 2006
  • In this paper, we propose fault diagnosis of induction motor based on PCA and MLP. To resolve the main drawback of MLP, we calculate the reduced features by PCA in advance. Finally, we develop the diagnosis system based on nonlinear classifier by MLP rather than linear classifier by conventional k-NN. By various experiments, we obtained better classification performance in comparison to the results produced by linear classifier by k-NN.

Efficient Transformer Dissolved Gas Analysis and Classification Method (효율적인 변압기 유중가스 분석 및 분류 방법)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.563-570
    • /
    • 2018
  • This paper proposes an efficient dissolved gas analysis(DGA) and classification method of an oil-filled transformer using machine learning algorithms to solve problems inherent in IEC 60599. In IEC 60599, a certain diagnosis criteria do not exist, and duplication area is existed. Thus, it is difficult to make a decision without any experts since the IEC 60599 standard can not support analysis and classification of gas date of a power transformer in that criteria. To address these issue. we propose a dissolved gas analysis(DGA) and classification method using a machine learning algorithm. We evaluate the performance of the proposed method using support vector machines with dissolved gas dataset extracted from a power transformer in the real industry. To validate the performance of the proposed method, we compares the proposed method with the IEC 60599 standard. Experimental results show that the proposed method outperforms the IEC 60599 in the classification accuracy.

Classification of Sasang Constitutions Using Weighted Fuzzy Classifier (가중치 퍼지 분류기를 이용한 사상 체질 분류)

  • Shin, Sang-Ho;Beum, Soo-Gyun;Woo, Young-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.314-316
    • /
    • 2009
  • 본 논문에서는 사상체질분류검사 설문지를 이용하여 사상체질을 진단할 때, 진단의 정확도를 향상시키기 위한 사상체질 분류 함수를 개발하기 위하여 퍼지 분류기를 이용한다. 본 연구에서 사용하는 데이터는 9개 한의과대학의 10개 부속한방병원에서 치료를 받은 환자들 중 각 병원의 사상체질전문의로부터 체질진단을 받고 최소한 4주 이상 사상체질 처방을 사용한 후 주 증상이 전반적으로 호전되어 체질이 확인된 환자 1,914명을 대상으로 하고 있다. 본 연구는 사상체질의학의 광제설을 토대로 환자의 성별을 분리 하였을 뿐만 아니라, 비만도를 추가적으로 분류하였으며, 체형기상, 용모사기, 성질재간, 병증약리 중 체형기상을 토대로 분류하였으며, 사상체질을 판별할 수 있도록 설계되고 구현되었다.

  • PDF

Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations (유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구)

  • Lee, Ki-Kwang;Han, Chang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • Medical diagnosis can be considered a classification task which classifies disease types from patient's condition data represented by a set of pre-defined attributes. This study proposes a hybrid genetic algorithm based classification method to develop classifiers for multidimensional pattern classification problems related with medical decision making. The classification problem can be solved by identifying separation boundaries which distinguish the various classes in the data pattern. The proposed method fits a finite number of regional agents to the data pattern by combining genetic algorithms and local adaptive operations. The local adaptive operations of an agent include expansion, avoidance and relocation, one of which is performed according to the agent's fitness value. The classifier system has been tested with well-known medical data sets from the UCI machine learning database, showing superior performance to other methods such as the nearest neighbor, decision tree, and neural networks.

  • PDF

Multi-parametric Diagnosis Indexes and Emerging Pattern based Classification Technique for Diagnosing Cardiovascular Disease (심혈관계 질환 진단을 위한 복합 진단 지표와 출현 패턴 기반의 분류 기법)

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho;Jung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.11-26
    • /
    • 2009
  • In order to diagnose cardiovascular disease, we proposed EP-based(emerging pattern- based) classification technique using multi-parametric diagnosis indexes. We analyzed linear/nonlinear features of HRV for three recumbent postures and extracted four diagnosis indexes from ST-segments to apply the multi-parametric diagnosis indexes. In this paper, classification model using essential emerging patterns for diagnosing disease was applied. This classification technique discovers disease patterns of patient group and these emerging patterns are frequent in patients with cardiovascular disease but are not frequent in the normal group. To evaluate proposed classification algorithm, 120 patients with AP (angina pectrois), 13 patients with ACS(acute coronary syndrome) and 128 normal people data were used. As a result of classification, when multi-parametric indexes were used, the percent accuracy in classifying three groups was turned out to be about 88.3%.

Development of a Vibration Diagnostic System for Steam Turbine Generators (스팀터빈 발전기 진동진단 시스템 개발)

  • Lee, An-Sung;Hong, Seong-Wook;Kim, Ho-Jong;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.267-272
    • /
    • 1995
  • 스팀터빈 발전기의 주요 진동현상을 분석종합하여, 진동 진단 시스템을 개발하였다. 진동진단 특성매개변수를 주파수, 발생속도, 진폭, 위상, 그리고 운전조건/상태변화에 따라 체계적으로 분류하였으며, 이를 인과관계에 따른 대응 진도원인과 연계시켜 종합진동진단표를 구성하였다. 아울러, 진단 특성매개변수의 선정 및 진단결과의 검증과 현장에서의 응급조치시 도움이 될 수 있도록, 각 진동별 대표적 특성과 운전조작/대책을 표로 작성하였다. 구성된 진단표를 토대로, 현장에서 노트-북 PC등을 활용한 손쉬운 진단이 가능하도록, 대화식 스팀터빈 발전기 진동진단 시스템을 개발하였다. 개발된 진단시스템에서는 현장에서 입수가능한 일부 대표적 진동현황 또는 특성만을 입력하여도 진단이 가능하도록 로직이 구성되어 있다. 한편, 개발된 진단시스템을 실제 스팀터빈의 사고사례에 적용하여 시험운용하였으며, 시험결과가 보고서의 분석결과와 만족스럽게 일치하였다. 따라서, 개발된 진단시스템을 활용하여 스팀터빈 발전기의 가능한 진동원인들을 반복해서 분류하고 이들을 검토, 분석함으로써, 신속한 1차적인 진동진단이 가능한 것으로 판단된다.

  • PDF

Study on Development of Classification Model and Implementation for Diagnosis System of Sasang Constitution (사상체질 분류모형 개발 및 진단시스템의 구현에 관한 연구)

  • Beum, Soo-Gyun;Jeon, Mi-Ran;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.155-159
    • /
    • 2008
  • In this thesis, in order to develop a new classification model of Sasang Constitutional medical types, which is helpful for improving the accuracy of diagnosis of medical types. various data-mining classification models such as discriminant analysis. decision trees analysis, neural networks analysis, logistics regression analysis, clustering analysis which are main classification methods were applied to the questionnaires of medical type classification. In this manner, a model which scientifically classifies constitutional medical types in the field of Sasang Constitutional Medicine, one of a traditional Korean medicine, has been developed. Also, the above-mentioned analysis models were systematically compared and analyzed. In this study, a classification of Sasang constitutional medical types was developed based on the discriminate analysis model and decision trees analysis model of which accuracy is relatively high, of which analysis procedure is easy to understand and to explain and which are easy to implement. Also, a diagnosis system of Sasang constitution was implemented applying the two analysis models.

  • PDF

An Efficient Disease Inspection Model for Untrained Crops Using VGG16 (VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델)

  • Jeong, Seok Bong;Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Early detection and classification of crop diseases play significant role to help farmers to reduce disease spread and to increase agricultural productivity. Recently, many researchers have used deep learning techniques like convolutional neural network (CNN) classifier for crop disease inspection with dataset of crop leaf images (e.g., PlantVillage dataset). These researches present over 90% of classification accuracy for crop diseases, but they have ability to detect only the pre-trained diseases. This paper proposes an efficient disease inspection CNN model for new crops not used in the pre-trained model. First, we present a benchmark crop disease classifier (CDC) for the crops in PlantVillage dataset using VGG16. Then we build a modified crop disease classifier (mCDC) to inspect diseases for untrained crops. The performance evaluation results show that the proposed model outperforms the benchmark classifier.

Neural Network Pair with Negatively Correlated Genes for Cancer Classification (암의 분류를 위한 음의 상관관계 유전자의 신경망 쌍)

  • 원홍희;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.359-361
    • /
    • 2003
  • 정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.

  • PDF