• Title/Summary/Keyword: 진공조건

Search Result 1,454, Processing Time 0.033 seconds

광진단을 이용한 전자 에너지 분포 함수 변화 감지 알고리즘 개발

  • Park, Seol-Hye;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.131-131
    • /
    • 2010
  • 원자의 여기 및 천이에 의한 플라즈마에서의 빛 방출은 일차적으로 여기를 위한 특정 문턱값 이상의 에너지 공급이 전제 된다. 진공 플라즈마에서 대부분의 에너지 전달 과정은 전자와의 물리적 충돌에 의해 일어나므로 충돌 여기의 결과 발생한 광신호 세기는 전자 에너지 분포에 대한 정보를 내포하고 있다. 전자는 입자들 간의 에너지 전달 매개가 되는 동시에 플라즈마 구성 입자 중 가장 가벼워 빠르게 주변 환경 변화에 응답하여 열평형을 이루므로 EEDF는 플라즈마의 미세한 변동까지도 보여줄 수 있는 인자가 된다. 플라즈마의 열평형 이동에 관한 정보를 광신호로부터 EEDF의 형태로 추출해내기 위해 BEB (Binary - Encounter - Bethe) 모델을 근거로 충돌 반응 단면적을 함수로 나타내어 신호를 분석하였다. EEDF의 꼴을 $f(E)=AEexp(-E^b)$의 임의의 형태로 두고 아르곤의 427nm, 763nm 두 빛의 세기 비를 BEB 모델을 적용하여 전개한 결과 b factor 의 값을 구할 수 있었다. b factor 가 1인 경우는 Maxwellian, 2인 경우는 압력이 높은 조건에서 잦은 충돌에 의한 에너지 손실 때문에 고에너지 전자군이 현격하게 감소된 Druyvesteyn 분포를 의미하므로 광신호에 모델을 적용하여 얻은 b factor의 변화는 EEDF의 형태 자체의 변화가 감지되었음을 보여준다. 실제로 13.56MHz - 1kW ICP 장치에서 아르곤 플라즈마를 발생시켰을 때, 압력이 낮아 Maxwellian 분포가 예상되는 10mTorr 조건에서는 b=1.13, Druyvesteyn 분포에 가까워지는 100mTorr 조건에서는 b=1.502 로 관측되었다.

  • PDF

스퍼터링으로 제조된 비정질 카본박막의 특성

  • 박형국;정재인;손영호;박노길
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.131-131
    • /
    • 1999
  • 비정질 카본 박막은 다이아몬드와 유사한 높은 경도, 내마모성, 윤활성, 전기절연성, 화학적 안정성, 그리고 광학적 특성을 가진 재료로서 플라즈마 CVD를 이용한 합성방법으로 제조된 박막이 주로 연구되고 있다. 본 연구에서는 마그네트론 스퍼터링을 이용하여 다양한 조건의 카본 박막을 제조하였다. 카본 박막의 제조는 이온빔이 장착된 고진공 증착 장치를 이용하였고 시편의 청정시 사용된 이온빔의 조건은 빔 전압이 500V, 빔 전류는 0.1mA/cm2로 기판 청정을 거친 후 DC 마그네트론 스퍼터링을 이용하여 흑연을 증발시켜 박막을 제조하였다. 기판과 타겟의 거리는 13cm로 고정시킨 후 타겟 전류는 1A로 유지하면서 30분간 증착하였다. 기판은 Si-wafer와 glass를 주로 사용하였으며 기판 인가전압, 아세틸렌 유량, 기판 온도등을 변화시켜가면서 각각 카본 박막을 제조하였다. 비정질 카본박막의 막은 평균 두께는 0.4~1.2$\mu\textrm{m}$이며 SEM을 이용하여 단면의 성장구조를 관찰하였다. 라만 분광분석과 FTIR 분광분석을 통하여 비정질 카본 박막의 결합특성을 조사하였고 scratch tester를 이용하여 박막의 밀찰력을 관찰하였다. 제조된 박막의 두께는 아세틸렌 가스 이용시 1$\mu\textrm{m}$ 이상의 박막의 제조가 가능하였으며 카본 박막의 라만 분광특성은 고체 탄소 물질의 S와 G-peak으로 구성되어 있으며 기판 인가전압, 아세틸렌 가스 유량 변화에 따른 peak의 위치 이동 및 FWHM의 변화를 관찰하였다. RFIR 결과는 아세틸렌 가스의 유량이 증가에 따라 C-H 결합 분포가 증가며 기판 인가 전압이 증가할수록 C-H 결합분포가 감소하는 경향이 나타냈다. 이는 이온 충돌 효과에 따라 결합력이 약한 C-H 결합이 우선적으로 파괴되는 현상으로 생각되어 진다. Scartch tester 측정 결과 박막의 밀착력은 실험조건에 따른 경샹성은 보이고 있지 않으나 10N 정도이며 60N 이상의 강한 밀착력을 가진 박막도 제조되었다.

  • PDF

Deposition of a-SiN:H by PECVD (PECVD에 의한 질화 실리콘 박막의 증착)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2095-2099
    • /
    • 2007
  • In this paper, the optimum amorphous silicon nitride thin film is deposited using plasma enhanced chemical vapor deposition(PECVD). Amorphous silicon nitride is deposited using $SiH_4$ and $NH_3$ gas. At this time, electrical and optical characteristics of amorphous silicon nitride and deposition rate are changed under deposition condition such as $SiH_4$, $NH_3$ and $N_2$ gas flow rate, chamber pressure, rf power and substrate temperature. From the experimental results, we can estimate that the deposition condition makes a good electrical characteristic of amorphous silicon nitride thin film.

고출력 펨토초 레이저와 플라즈마의 상호작용을 통한 극고속 X선 펄스의 발생

  • Jeong, Sang-Yeong;Hwang, Seok-Won;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.38-38
    • /
    • 2010
  • 낮은 세기의 레이저와 정지한 전자가 반응하면 전자는 레이저 전기장 세기에 비례하여 가속되며 레이저의 파장과 같은 파장의 빛을 낸다. 반면, 레이저의 세기가 일정 수준을 넘으면 전자의 속도가 빛의 속도에 가까워지게 되어 가속이 둔화되는 현상이 나타나며, 더 이상 전기장의 세기와 가속도가 비례하지 않게 된다. 이러한 비선형적인 전자의 운동이 레이저 기본 파장의 조화파(harmonic)를 발생시키는데, 이를 상대론적 비선형 톰슨 산란(relativistic nonlinear Thomson scattering, RNTS)이라고 한다. 단일 전자를 가정한 경우 RNTS에 의해 아토초($10^{-18}$ 초) 길이의 X선 펄스가 발생하는 것이 시뮬레이션 연구를 통해 잘 알려졌다. [1] 그러나, 실제 실험에서 적용할 수 있는 것은 단일 전자가 아니라 고체, 플라즈마, 전자 빔 등의 전자 덩어리이다. 전자덩어리를 구성하는 각각의 전자가 아토초 펄스를 발생시더라도 각각의 펄스 간에 결맞음(coherence) 조건이 맞지 않으면 아토초 펄스는 발생되지 않는다. 또한, 강한 세기의 펄스를 얻는데도 결맞음은 중요하다. 이 연구에서는 결맞음 조건으로 얇은 타깃에 대한 거울 반사 조건, 즉 레이저가 얇은 타깃에 입사되며 거울의 반사 조건을 만족하는 위치에 검출기(detector)를 위치시키는 방법을 제안하였다. 박막이 충분히 얇을 경우 각각의 전자에 대하여 레이저가 발사되어 타깃에 맞고 검출되기까지의 시간이 거의 일치하게 된다. 거울 반사 조건에 의한 아토초 펄스 발생은 particle-in-cell 방법을 통한 시뮬레이션으로 검증되었다. 결맞음 조건을 위한 얇은 타깃으로는 박막과 나노선 배열(nanowire array)을 사용하였다. 전자들 간의 쿨롱(Coulomb) 힘은 결맞음이 유지되는 것을 방해하는데, 박막에 비해 나노선 배열이 쿨롱 힘의 영향을 적게 받기 때문에 결맞음이 더 잘 유지된다.

  • PDF

Vacuum Safety

  • Ju, Jang-Heon
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.49-58
    • /
    • 2015
  • 진공 배기 시스템에 위험한 환경을 초래할 수 있는 모든 가능성을 찾아 낼 수는 없지만 누적된 현장 경험과 연구 결과에 맞추어 최대한 필요한 안전 조치들을 취해야 한다. 진공 배기 시스템이나 그 구성품들에 대한 심각한 파손을 유발하는 공통적인 요인들은 발화성 물질의 점화나 진공 배기 시스템의 배기구 막힘에 의해 발생한다. 따라서, 진공 펌프와 진공 시스템의 안전한 가동과 사용을 위해서는 다음과 같은 것들을 반드시 준수하여야 한다. ${\blacksquare}$ 발화성, 폭발성 공정 물질을 사용하는 진공 배기 시스템은 정규 유지 보수 작업(PM) 후 첫 번째 배기 과정은 매우 천천히 진행하여 진공 배기 시스템 내부에 급격한 난류가 형성되지 않도록 해 주어야 한다. ${\blacksquare}$ 진공 배기 시스템 내에서 발화성 물질들의 농도가 발화 영역(flammable zone, potentially explosive atmosphere)에 들어가지 않도록 하여야 한다. 이를 위해서는 불활성 가스를 이용하여 진공 펌프와 진공 배기 시스템의 가동 예상 조건이나 고장 환경하에서 안전한 농도 이하로 희석시켜야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 장착되어 사용되는 밸브 등의 기계적 부품들이나 공정에 사용되는 물질과 공정 부산물들(by-products)로 인하여 배관, 필터 배기구 등이 막히지 않도록 하여야 한다. ${\blacksquare}$ 공정에 사용되는 물질들, 특히 산소($O_2$), 오존 ($O_3$) 등의 산화제 농도가 높을 때는 오일 회전 배인 진공 펌프(Oil rotary vane vacuum pump)에 미네랄(mineral) 오일을 사용하지 말아야 하며, PFPE(Perfluoropolyether) 오일을 사용하여야 한다. 시판되는 진공 펌프 오일 중 비발화성(non-flammable)으로 표기된 오일이라고 하더라도 산화제(oxidant)의 농도가 체적비로 30 % 넘는 공정 환경에는 사용하지 말아야 한다. ${\blacksquare}$ 진공 펌프와 진공 배기 시스템에 의해 배기되는 물질들이 물($H_2O$)과 격렬하게 반응하는 경우는 물이 아닌 다른 냉각제를 사용하여야 한다. ${\blacksquare}$ 안전하지 않다고 판단되는 상황에서는 해당 전문가의 조언이나 해당 전문가의 직접적인 현장 도움을 통해 문제를 해결하여야 한다.