• Title/Summary/Keyword: 직접하중해석

Search Result 273, Processing Time 0.027 seconds

Development of ViscoElastoPlastic Continuum Damage (VEPCD) Model for Response Prediction of HMAs under Tensile Loading (인장하중을 받는 아스팔트 혼합물의 점탄소성 모형의 개발)

  • Underwood, B. Shane;Kim, Y. Richard;Seo, Youngguk;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.45-55
    • /
    • 2008
  • The objective of this research was to develop a VEPCD (ViscoElastoPlastic Continuum Damage) Model which is used to predict the behavior of asphalt concrete under various loading and temperature conditions. This paper presents the VEPCD model formulated in a tension mode and its validation using four hot mix asphalt (HMA) mixtures: dense-graded HMA, SBS, CR-TB, and Terpolymer. Modelling approaches consist of two components: the ViscoElastic Continuum Damage (VECD) mechanics and the ViscoPlastic (VP) theory. The VECD model was to describe the time-dependent behavior of HMA with growing damage. The irrecoverable (whether time-dependent or independent) strain has been described by the VP model. Based on the strain decomposition principle, these two models are integrated to form the VEPCD model. For validating the VEPCD model, two types of laboratory tests were performed: 1) a constant crosshead strain rate tension test, 2) a fatigue test with randomly selected load levels and frequencies.

A Study on Analysis of Real Response of Steel Railway Bridges (강철도교의 실응답해석에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.43-54
    • /
    • 1989
  • In this paper, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges due to train loads could be calculated appropriately. From this, it is investigated how the impact factors are varied by changing the train speed above 100km/h Field measurement is carried out by the steel strain gages and displacement transducers at the main design points, and then the static and dynamic response, fundamental frequencies, damping ratios and impact factors of the bridges are obtained. Static analysis is done using the computer program developed according to three dimensional matrix structural analysis in which the trains and bridges are modelled as 1,2 and 3 dimensions. Dynamic analysis is done according to 2 approaches, the moving force and mass problem. In moving force problem, the solutions are obtained by the modesuperposition-method and in moving mass problem by the direct integration method. From this study, it is known that in order to obtain the static response in the railway bridges, the bridge could be modelled by 1 or 2 dimension as in the highway bridge, however the response ratio(measured/calculaled) is high comparing to the highway bridges. By the way, the dynamic response should be obtained by the moving mass problem. And by comparing the measured and code specified impact factors, it is known that the factors specified in the present railway bridge code are very safe under the present service speed below 100km/h. However, because the factors become very high under the speed above 100km/h, especially in the simple plate girder bridge, it is thought that the code specification on impact factor should be discussed enough under the rapid transit system.

  • PDF

An Automatic Data Generation Procedure for Finite Element Structural Analysis of Cargo Holds of a Ship (선체중앙부 유한요소 구조해석을 위한 입력자동화)

  • S.W. Park;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.99-108
    • /
    • 1994
  • As a consequent result of our previous paper, "Development of Automatic Data Generation Program for Finite Element Structural Analysis of Oil Tankers"[1], the objective of this paper is to develop an automatic modeling program for the three-dimensional finite element structural analysis of hull modules of general commercial ships, especially oil tankers, bulk carriers, and container ships. Based on the proposed algorithm in [1], the followings are newly added: general applicability for three ship types, automatic mesh division interface with MSC/NASTRAN, direct wave load calculation interface, and Graphic User Interface technology in the process of input data preparation. The usefulness of this procedure is verified by calculation examples. examples.

  • PDF

Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge (인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정)

  • Ok, Su Yeol;Moon, Hyun Su;Chun, Pang-Jo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1655-1665
    • /
    • 2014
  • Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN. Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.

Optimization of Reinforcement Effect of Large-diameter Drilled Deep Foundation (보강형 현장타설말뚝의 최적보강효과 분석)

  • 남대승;김수일;이준환;윤경식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • Drilled deep foundations of large diameter are often used for foundations of transmission towers. As tower structures become larger in modern society, there is a need of more efficient and economical design of large-diameter drilled deep foundations. Reinforced drilled deep foundations are popular in Japan for the foundation of tower structures. Stiffeners attached to the shaft of the foundation are used to increase the shaft resistance. This study aims at analyzing the effect of reinforcement with large-diameter drilled deep foundations based on numerical analysis of the representative soil and rock conditions in Korea. The numerical analyses are conducted to analyze the reinforcement effect of various stiffener conditions of number, inclination, location and length. Regarding to number of stiffeners, the effect of reinforcement for weathered and soft rocks increases proportionally as the number of stiffeners increases. For weathered soil, however, the effect of reinforcement increases at a lower rate. The effect of stiffener location is nearly negligible for axially loading cases, while it is significant for laterally loading cases. For the laterally loading cases, upper locations of stiffener give greater reinforcement effect than that of lower location. For stiffener inclinations of axial loading cases, a stiffener inclination equal to 60$^{\circ}$ gives the greatest reinforcement effect.

A study on structural safety evaluation of jet vane under very high temperature and dynamic pressure (초고온 동압을 받는 제트 베인의 구조 안전성 평가에 대한 연구)

  • Park Sunghan;Lee Sangyeon;Park Jongkyoo;Kim Wonhoon;Moon Soonil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.99-105
    • /
    • 2005
  • To evaluate structural safety factor of the jet vane for the thrust deflection system under the dynamic pressure and very high temperature($2700^{\circ}C$) of the combustion gas flow, the high temperature tension tests of refractory metals and 3-D nonlinear numerical simulations are performed. Through the analysis of high temperature structural behavior for jet vane, the structural safety of jet vane is evaluated, and numerical results are compared with static pound tests of jet vanes. It has been found that most of structural and thermal loading is concentrated on the vane shaft which worked as safe under $1400^{\circ}C$. From the comparison of static ground tests and numerical results, the evaluation criterion using the vane load and shaft displacement is more useful to estimate the structural safety than using the equivalent stress.

  • PDF

A Study on Structural Safety Evaluation of let Vane under very High Temperature and Dynamic Pressure (초고온 동압을 밭는 제트 베인의 구조 안전성 평가에 대한 연구)

  • Park Sunghan;Lee Sangyeon;Park Jongkyoo;Kim Wonhoon;Moon Soonil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-24
    • /
    • 2005
  • To evaluate structural safety factor of the jet vane for the thrust deflection system under the dynamic pressure and very high temperature(2700$^{\circ}C$ ) of the combustion gas flow, the high temperature tension tests of refractory metals and 3-D nonlinear numerical simulations are performed. Through the analysis of high temperature structure behavior for jet vane, the structure safety of jet vane is evaluated, and numerical results are compared with static ground tests of jet vanes. It has been found that most of structural and thermal loading is concentrated on the vane shaft which worked as safe under 1400$^{\circ}C$. From the comparison of static ground tests and numerical results, the evaluation criterion using the vane load and shaft displacement is more useful to estimate the structural safety than using the equivalent stress.

A Coupled Analysis of Finite Elements and Boundary Elements for Time Dependent Inelastic Problems (시간의존 비탄성 문제의 유한요소-경계요소 조합에 의한 해석)

  • Kim, Moon Kyum;Huh, Taik Nyung;Jang, Jung Bum;Oh, Se Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.25-34
    • /
    • 1993
  • The long-term behavior, such as in excavation problems of weak medium, can be dealt with by the elasto-viscoplasticity models. In this paper, a combined formulation of elasto-viscoplasticity using boundary elements and finite elements without using internal cells is presented. The domain integral introduced due to the viscoplastic stresses is transformed into a boundary integral applying direct integration in cylindrical coordinates. The results of the developed boundary element analysis are compared with those from the explicit solution and from the finite element analysis. It is observed that the boundary element analysis without internal cells results in some error because of its deficiency in handling the nonlinearity in local stress concentration. Therefore, a coupled analysis of boundary elements and finite elements, in which finite elements are used in the area of stress concentration, is developed. The coupled method is applied to a time dependent inelastic problem with semi-infinite boundaries. It results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed. Thus, it is concluded that the combined analysis may be used for such problems in the effective manner.

  • PDF

Numerical Experiments of Dynamic Wave Pressure Acting on the Immersed Tunnel on Seabed Foundation (해저지반 상부에 설치된 침매터널에 작용하는 동수압에 관한 수치실험)

  • Hur Dong Soo;Kim Chang Hoon;Yeom Gyeong Seon;Kim Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.294-306
    • /
    • 2005
  • Most immersed tunnels investigated have been investigated based on the engineer's experience with design and construction. From engineering point of view, it is very important to understand the wave interaction with the seabed and immersed tunnel, since the stability of an immersed tunnel depends largely on the behavior of the seabed foundation. In this study, for the first stage research to find out the mechanism of the wave interaction with the seabed and immersed tunnel, the benchmarking method called as direct numerical simulation (DNS) was employed to analyze comprehensively the wave-induced pore water pressures, vorticity and flows in seabed or inside rubble stone around the immersed tunnel. The immersed tunnel is modeled based on Busan-Geoje fixed link project in Korea, which is now on the stage of planning. Moreover, the nonlinear water wave interaction with an immersed tunnel/its seabed foundation was thoroughly examined with regard to the stabilities of the immersed tunnel subjected to various water wave conditions, median grain size and so forth.

Stress Analysis of the GEO-KOMPSAT-2 Tubing System (정지궤도복합위성 추진계 배관망 구조해석)

  • Jeong, Gyu;Lim, Jae Hyuk;Chae, Jongwon;Jeon, Hyung-Yoll
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this paper, the structural analysis of the Geostationary Korea Multi-Purpose Satellite-2 (GEO-KOMPSAT-2) tubing system is discussed, and the structural integrity of the tubing system is assessed by comparative analysis with the results of overseas partner AIRBUS. Securing structural reliability of the tubing system is a very important key element of the propulsion system of the GEO-KOMPSAT-2 satellite. Therefore, FE modeling of the propulsion tubing was carried out directly using the CAE program, and structural analysis was performed to evaluate the stress state under launch conditions. Hoop stress, axial stress, bending stress, and torsion stress were calculated according to diverse load conditions by using pressure stress analysis, thruster alignment analysis, sine qualification load analysis, and random qualification load analysis. From the results, the Margin of Safety (MoS) of the tubing system is evaluated, and we can verify the structural integrity of the tubing system when subjected to various launch loads.