• Title/Summary/Keyword: 직접접촉 열전달

Search Result 29, Processing Time 0.033 seconds

Air Handling Unit Utilizing Water/Air Direct Contact Heat Exchanger with Mesh (공기조화기내 메쉬삽입 물-공기 직접접촉의 열전달 특성 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Chong-Bo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in water/air direct contact air conditioning system. Mesh is inserted as a turbulent promoter in front of the water injection nozzle. The heat transfer characteristics with and without mesh and the effect of the number of inserted mesh and mesh porosity size have been studied experimentally. Inserted mesh improves heat transfer efficiency compared to non~inserted mesh system and heat transfer efficiency increased as the number of mesh is increased. Meanwhile, heat transfer efficiency decreased as the porosity of the mesh is increased. With inserted mesh, inlet and outlet temperature difference of air increased more than 50%. Heat exchange time of water/air to reach the 100% humidity decreased less than 30%. This result shows inserted mesh can enhance the performance of the water/air direct contact air conditioning system.

A Study on Boiling Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 비등특성 연구)

  • 김남진;김종보
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.420-428
    • /
    • 1995
  • 현재 사용하고 있는 액화천연가스 기화기는 관내부로 -162$^{\circ}C$의 액화가스가 흐르고, 관외부로 발전소 증기응축기 출구에서 배출된 20~3$0^{\circ}C$의 해수를 흐르도록 하여, 두 유체사이의 온도차로 기화시키는 간접접촉방식 열교환기가 사용되고 있다. 그러나 간접접촉방식 열교환기는 두 유체사이의 큰 온도차로 인한 금속재료의 피로현상과 해수의 염분에 의한 재질의 부식 및 미생물 부착 등의 원인으로 열전달효율이 저하되고 있다. 따라서 본 연구는 관을 중간매체로 하는 간접접촉식 열교환기대신 액화천연가스와 기화용수인 물을 직접접촉시키는 방법으로 이용하여, 위와 같은 문제점들을 근본적으로 해결하려 한다. 본 실험에서는 기화기내의 수위 500 mm와 물의 유량 10 l/min을 일정하게 고정시키고, 액화천연가스의 유량 0.12 ㅣ/min, 0.36 l/min, 0.6 l/min, 기화기내의 압력을 100 kPa, 300 kPa, 500kPa로 변화시키면서 기화기내의 기포, 온도분포, 급팽창현상, 동결현상 및 기화후 수분함유량등의 비등특성을 규명하였다. 실험결과 기화기내의 압력이 증가할수록 기포는 작고 균일한 분포를 이루고, 폭발적인 급팽창현상은 일어나지 않았다. 또한 동결현상은 액화천연가스의 기화를 방지하지 못하였으며, 기화된 천연가스내의 수분함유량 몰%는 압력과 유량이 증가함에 따라 감소하는 경향을 보이고 있다.

  • PDF

Numerical Study on Heat Transfer Characteristics in a directly Heated $SO_3$ Decomposer for the Sulfur-Iodine process (황-요오드 공정용 직접접촉 삼산화황 분해반응기내 열전달 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Shin, Young-Joon;Tak, Nam-Il;Lee, Ki-Young;Chang, Jong-Wha;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2244-2249
    • /
    • 2007
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed by using a computational fluid dynamics code(CFD) with the CFX 5.7.1. The use of a directly heated decomposition reactor in conjunction with a VHTR allows higher decomposition reactor operating temperature. However, the thermochemical and hybrid hydrogen production processes accompanied with the high temperature and strongly corrosive operating conditions basically have material problems. In order to resolve these problems, we carried out the development of a structural material and equipment design technologies. The results show that the maximum temperature of the structural material (RA330) could be maintained at 800$^{\circ}C$ or less. Also, it can be seen that the mean temperature of the reaction region packed with catalysts in the $SO_3$ decomposition reactor could satisfy the temperature condition of around 850 $^{\circ}C$ which is the target temperature in this study.

  • PDF

An Analysis on Direct-Contact Condensation in Horizontal Cocurrent Stratified How of Steam and Cold Water (동방향 성층이상유동에서의 직접접촉 응축현상에 대한 해석)

  • Lee, Sukho;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.130-140
    • /
    • 1992
  • The physical benchmark problem on the direct-contact condensation under the horizontal occurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was peformed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range.

  • PDF

A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger (분사칼럼식 직접접촉열교환기의 열전달특성에 관한 수치적 연구)

  • 강용혁;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.735-744
    • /
    • 2000
  • In order to define the heat transfer characteristics in a spray column direct contact heat exchanger, the development of a multidimensional numerical model and computational algorithm is essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. In the present study, it has been carried out numerical calculations using a two-dimensional model for operation of a direct contact heat exchanger. Such operational and system parameters as the injection velocity, void fraction, aspect ratio and injection temperature of each fluid are examined thoroughly to assess their influence on the performance of a spray column. Analyzed results has shown that our two-dimensional model predicts the heat transfer phenomena well in a spray column.

  • PDF

Boiling Heat Transfer Coefficients of Nanofluids Containing Carbon Nanotubes up to Critical Heat Fluxes (탄소나노튜브 적용 나노유체의 임계 열유속까지의 비등 열전달계수)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Shim, Sang-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.665-676
    • /
    • 2011
  • In this study, the nucleate pool boiling heat transfer coefficients (HTCs) and critical heat flux (CHF) for a smooth and square flat heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at $60^{\circ}C$ were measured. Tested aqueous nanofluids were prepared using CNTs with volume concentrations of 0.0001%, 0.001%, and 0.01%. The CNTs were dispersed by chemically treating them with an acid in the absence of any polymers. The results showed that the pool boiling HTCs of the nanofluids are higher than those of pure water in the entire nucleate boiling regime. The acid-treated CNTs led to the deposition of a small amount of CNTs on the surface, and the CNTs themselves acted as heat-transfer-enhancing particles, owing to their very high thermal conductivity. There was a significant increase in the CHF- up to 150%-when compared to that of pure water containing CNTs with a volume concentration of 0.001%. This is attributed to the change in surface characteristics due to the deposition of a very thin layer of CNTs on the surface. This layer delays nucleate boiling and causes a reduction in the size of the large vapor canopy around the CHF. This results in a significant increase in the CHF.

Experimental Study on Inward Melting of Phase Change Material in Inclined Circular Tube (경사진 원통형 용기내에서 상변화 물질의 내향 용융에 관한 실험적 연구)

  • Yim, Chang-Soon;Son, Ha-Jin
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.48-58
    • /
    • 1992
  • In the present investigation, experimental analysis was performed to research heat transfer phenomena generated by means of conduction and natural convection at a succession of tube-inclimations relative to the vertical tube during inward melting process of a phase change material. The phase change material used in the experiments is 99 percent pure n-docosane paraffin($C_{22}H_{46}$). When the tube is vertical, the dominant mode of energy transfer between the tube wall and the melting interface is natural convection. On the other hand, when the tube is inclined to the vertical, the melting solid is brought into direct contact with the tube wall by the action of gravity. In the experimental results, direct contact gave rise to substantial enhancements in the amount of melted mass, relative to those for natural-convection-dominated melting.

  • PDF

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

A Study on Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 특성에 관한 연구)

  • 한승탁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.903-911
    • /
    • 1994
  • This study addresses the phenomena of bubbling, icing, eruption, component varieties of the evaporated natural gas, and volumetric heat transfer coefficients obtained during the operation of a proposed LNG evaporator between LNG and water in direct contact. In the present investigation, the explosive and eruption phenomena within the water column were not observed during the entire operation of the heat exchanger. Compared with the natural gas produced by conventional LNG evaporator, the analysis of the gas produced by the direct contact LNG evaporator shows that nitrogen, methane, and ethane components were reduced by 0.002~0.007mol%(4~14%), 1.6~1.92mol%(1.9~2.3%) and 0.17~1.28mol%(1.1~8.4%) respectively, while the moisture content was rather increased by 0.51~0.76mol%. The maximum volumetric heat transfer coefficient of the direct contact heat exchanger was found to be $21, 800kW/m^3\cdotK$.

A Study on a Heat Transfer Characteristics of Direct Contact Heat Exchanger for Steam Condensation According to Various Cooling Water Flow and Internal Pressure(The Purpose of Combination with LNG Evaporator) (증기응축용 직접접촉식 열교환기의 냉각수 유량과 내부압 변화에 따른 열전달 특성연구(LNG 기화기와의 조합목적))

  • Lee, B.C.;Han, S.T.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.153-160
    • /
    • 1991
  • Heat transfer characteristics of a direct contact heat exchanger utilizing sieve trays and spray nozzles for steam condensation for the purpose of combining with a LNG evaporator have been investigated with various cooling water flow rates and different vacuum pressures within the heat exchanger for the purpose of steam condensation. Temperature profiles and the volumetric overall heat transfer coefficients in a direct contact heat exchanger have been obtained for comparisons. The results show that the temperature differences between cooling water and steam along the direct contact heat exchanger height are rapidly decreasing and the volumetric overall heat transfer coefficients of the exchanger improves greatly as the inside vacuum pressure increases. The values of the overall heat transfer coefficients at P=-680mmHg have been increased significantly compared with at atmospheric pressure. At given pressure conditions, it is found that the values of average volumetric overall heat transfer coefficients for the sieve tray are found to be approximately 10% higher than those of the spray nozzle.

  • PDF