• Title/Summary/Keyword: 직접전단응력

Search Result 164, Processing Time 0.021 seconds

Effect of size and slope angle of tooth-shaped asperity on shear fracturing characteristics (삼각형 돌출부의 크기 및 경사각이 전단파괴 형상 특성에 미치는 영향)

  • Kim, Won-Keun;Choi, Woo-Yong;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.431-442
    • /
    • 2013
  • Most of previous studies have insufficiently investigated the shear behavior and fracturing characteristics, experimentally in respect to the change of size of tooth-shaped surface asperity such as length and slope angle in a broad range. This study investigates the influence of the length and slope angle of a tooth-shaped surface asperity on the fracturing characteristics and the interface shear strength by using direct shear test apparatus. A total of 36 interface direct shear tests were conducted by changing the three types of slope angle of surface asperity, four type of length, and three types of normal stress. The shape of fractured surface after the test was quantified by using a three-dimensional surface roughness measurement apparatus. Through the experimental test results, the characteristics of fractured shape of surface asperity according to the normal stress were investigated. In addition, fractured length and height were quantified at each slope angle of surface asperity under a certain normal stress condition.

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

Evaluation of Interface Shear Properties Between Geosynthetics and Soils Through Inclined Board Tests (경사판 시험을 통한 토목섬유와 흙의 접촉 전단 특성 평가)

  • 서민우;신준수;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.285-298
    • /
    • 2003
  • Shear properies of geosynthetic/geosynthetic and geosynthetic/soil interfaces which are widely met in landfill sites were evaluated from the inclined board tests. The inclined board testing apparatus is known to reproduce the shear behavior on the low normal stress most accurately. In this study, the friction angle of each interface was estimated and the tensile force mobilized at the geosynthetic was measured as well. The test results showed that the friction angle of each interface and the tensile force of the geosynthetics depended on the amount of normal stress, the type of the geosynthetics used, and the combinations of geosynthetics and soils. In addition, the sand/geotextile/geomembrane interface system was simulated in this study, and it was observed that the tensile force developed at the geomembrane decreased due to the protection effect of the geotextile located above the geomembrane. The test results of this research was compared with those of direct shear tests published, too. Finally, by comparing the measured tensile force of the geosynthetics when the initial displacement of the box occurs, when the slope is called as the critical slope, with suggested analytic solution, the accuracy of analytic solution and the applicability to design were identified.

Prediction for Liquefaction and Lateral Flow on Non-plastic Silt (비소성실트지반의 액상화 및 측방유동량 예측)

  • Yang, Taeseon;Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.65-70
    • /
    • 2011
  • It is well known all much information for evaluation on possibility of liquefaction and lateral flow for sand over the world. Recently, it is started to be known that liquefaction happens on non-plastic silt, too. But cyclic and post-cyclic characteristics for non-plastic silt is a few familiar to the world. Specially, it is not aware of the estimating method for lateral flow on non-plastic silt. The main purpose in this paper is to propose the evaluation for liquefaction and lateral flow on non-plastic silt. The method used in this research is that possibility for liquefaction on non-plastic silt was evaluated with cyclic direct simple shear test, and then residental strength was estimated with static shear test. Through the test results liquefaction on non-plastic silt is well not happened but strength decreases rapidly with increasing shear stress. With the proposed method it can be evaluated possibility of liquefaction and propose lateral flow.

The Proposal for Friction Velocity Formula at Uniform Flow Channel Using the Entropy Concept (엔트로피 컨셉을 이용한 등류수로 마찰속도식 제안)

  • Choo, Tai-Ho;Son, Hee-Sam;Yun, Gwan-Seon;Noh, Hyun-Seok;Ko, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.499-506
    • /
    • 2015
  • The friction velocity is a quantity with the dimensions of velocity defined by the friction stress and density of a wall surface at near wall of flow condition. Also, the friction velocity is the hydraulic parameter describing shear force at the bottom flow. Moreover, it is a very important factor in designing open channel and essential to determine the mixing coefficient in the main flow direction. The estimation of the friction velocity are such as methods using channel slope, linear law of the mean velocity at viscous sub-layer and direct measurement of wall shear stress, etc. In the present study, we propose a friction velocity equation that has been optimized by combining the concept of entropy, which is used in stochastic method, and to verify the proposed equation, the experimental data measured by Song was used. The R squared for friction velocities between proposed equation and friction velocity formula analyzed 0.999 to 1.000 in a very good agreement with each equation.

Evaluation of Input Parameters in Constitutive Models Based on Liquefaction Resistance Curve and Laboratory Tests (액상화 저항곡선과 실내실험에 기반한 구성모델 입력변수의 산정)

  • Tung, Do Van;Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.35-46
    • /
    • 2020
  • The input parameters for numerical simulation of the liquefaction phenomenon need to be properly evaluated from laboratory and field tests, which are difficult to be performed in practical situations. In this study, the numerical simulation of the cyclic direct simple shear test was performed to analyze the applicability of Finn and PM4Sand models among the constitutive models for liquefaction simulation. The analysis results showed that the Finn model properly predicted the time when the excess pore water pressure reached the maximum, but failed to simulate the pore pressure response and the stress-strain behavior of post-liquefaction. On the other hand, the PM4Sand model properly simulated those behaviors of the post liquefaction. Finally, the evaluation procedure and the equations of the input parameters in the PM4Sand model were developed to mach the liquefaction cyclic resistance ratio corresponding to design conditions.

Anisotropy of shear strength according to roughness in joint surface (절리면 거칠기에 의한 전단강도 이방성)

  • 이창훈;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.421-437
    • /
    • 2002
  • In order to quantify the anisotropic properties of rock included joints and shear behavior in joint surface, the mold is Produced for rock joint surface using gypsum Plaster and Peformed for replicated joint models made of cement mortar. Rock sample is measured using mechanical profilometer before testing and their result is expressed quantitatively. The statistical parameters and the fractal dimension by fractal theory for roughness is investigated its coordinate value for numerical process. The shear strength to the shear displacement in low level normal stress ismaintained or increased in most joint models. Their results present that this relationship is depended several roughness properties in joint model for natural rock joint. The relationship between the shear strength and the Properties for profiles estimated by some statistical parameter in roughness has the low correlation and is not constant. The result between the data for direct shear test and using Barton's equation, Barton's equation has not the effectiveness for the effect of anisotropy and has not suitable to recognizing the properties for joint surface. It means that JRC has not the properties of anisotropic rock surface. The fractal dimension is well correlated with the data of direct shear test than those of JRC. New experimental formulae using fractal dimension is comported with the anisotropic properties for direct shear test.

Relationship between Shear Strength and Component Content of Fault Cores (단층핵 구성물질의 함량과 전단강도 사이의 상관성 분석)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.65-79
    • /
    • 2019
  • In this study, simple regression and multiple regression analyses were performed to analyze the relationship between breccia and clay content and shear strength in fault cores. The results of the simple regression analysis performed for each rock (andesitic rock, granite, and sedimentary rock) and three levels of normal stress (${\sigma}_n=54$, 108, 162 kPa), reveal that the shear strength is proportional to breccia content and inversely proportional to clay content. Furthermore, as normal stress increases, the shear strength is influenced by the change in component content, correlating more strongly with clay content than with breccia content. In the multiple regression analysis, which considers both breccia and clay content, the shear strength is found to be more sensitive to the change in breccia content than to that of clay. As a result, the most suitable regression model for each rock is proposed by comparing the coefficients of determination ($R^2$) estimated from the simple regression analysis with those from the multiple regression analysis. The proposed models show high coefficients of determination of $R^2=0.624-0.830$.

Measurement of Friction Angle of Sand from Horizontal Stress and Torque Acting on Vane (베인에 작용하는 수평응력과 토크를 이용한 모래의 마찰각 측정)

  • Park, Sung-Sik;Kim, Dong-Rak;Lee, Sae-Byeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • In this study, the torque and horizontal stress acting on vane were measured and then used to determine a friction angle of sand. A dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5cm in diameter and 10cm in height) was rotated and the torque and horizontal stress were measured at real time. A maximum torque was 3.5-9.5Nm for loose sand and 7.4-17.6Nm for dense sand, respectively. The maximum torque increased as an overburden pressure increased. The maximum torque obtained at 14-20 degrees of vane rotation, which was not influenced by the initial alignment of earth pressure and vane blade. An initial horizontal stress ratio was 0.33-0.35 on the average. The horizontal stress increased initially and then decreased due to particle disturbance. A friction angle was calculated from real time varying horizontal stress and torque, which decreased with increasing overburden pressure. The friction angle of loose sand from vane shear test was similar to that of direct shear test but that of dense sand was overestimated.

A Study on the Reinforcement of Rock Faults by Grouting (암석 절리면의 그라우팅에 의한 보강에 관한 연구)

  • Chun, Byung-Sik;Choi, Joong-Keun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • Grouting materials in rock is grouted as vein type along the fault surface by the other way for soil and allow a change of characteristics in rock faults as a result of that. Therefore the deformation characteristics of rock faults after grouting differ as a direction and characteristic of grouted fault and stress condition of field rock. Thereby it must be analyzed the effect for deformation of rock according to characteristics of rock faults and characteristics of grouting materials to accurately evaluate the reinforced effect by grouting. But grouting method used in field until present depends on experience of workers, and inspection for those effects are evaluated by measurement of elastic wave velocity, permeability tests and etc. in field. In this study, it was investigated that the effects for shear characteristics of maximum shear strength, residual shear strength and etc. by comparison and analysis of test results which were worked by direct shear tests of rock faults with changing a type of grouting materials and the grouting depth(t) for average width(a) of fault surface roughness when OPC(Ordinary Portland Cement) and Micro cement was grouted in fault surface of field rock to evaluate characteristicsof the shear deformation for rock fault surface of dam by grouting.

  • PDF