• Title/Summary/Keyword: 직접전단응력

Search Result 164, Processing Time 0.031 seconds

Determination of Maximum Shear Modulus of Sandy Soil Using Pressuremeter Tests (프레셔미터 시험을 이용한 사질토 지반의 최대 전단탄성계수 결정)

  • Kwon, Hyung Min;Jang, Soon Ho;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.179-186
    • /
    • 2008
  • Pressuremeter test estimates the deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall. It is general to utilize the reloading curve for the estimation of deformational properties of soil because the initial loading curve can be affected by the disturbance caused by boring. On the other hand, the instrumental resolution or the variation of measured data makes it hard to estimate the maximum shear modulus from pressuremeter test results. This study suggested the methodology estimating the maximum shear modulus from pressuremeter test directly, based on the curve fitting of reloading curve. In addition, the difference was taken into account between the stress state around the probe in reloading and that of the in-situ state. Pressuremeter tests were conducted for 15 cases using a large calibration chamber, together with a number of reference tests. The maximum shear moduli taken from suggested method were compared with those from empirical correlation and bender element test.

The simple measurement of physical properties and stress fringe value for photo-elastic orthotropic material (광탄성 직교이방성체의 물성치와 응력 프린지치 간이 측정법)

  • 황재석;이광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.23-36
    • /
    • 1990
  • The various composite materials have been developed with the development of high strength material and the increasement of composite material usage. Therefore many researchers have studied about the stress analysis and the fracture mechanics for composite materials through the experiment or the theory. Among the experimental methods, the photoelastic experiments have been used for the stress analysis of the isotropic structures or the anisotropic structures. To analyze the stresses in the orthotropic material with photoelastic experiment, the basic physical properties ( $E_{L}$, $E_{T}$, $G_{LT}$ , .nu.$_{LT}$ ) and the basic stress fringe values ( $f_{L}$, $f_{T}$, $f_{LT}$ )are needed, therefore the relationships between the basic physical properties and the stress fringe values were derived in this paper. When the stress fringe value is very large, it was assured by the experiment that the relationships are established both in the room temperature and in the high temperature (T = 130.deg. C). Therefore the basic physical properties can be obtained from the relationships by measuring stress fringe values instead of measuring the basic physical properties.rties.

Study of Ground Reinforced Effect using the Porous Geocell (다공성 지오셀을 이용한 지반 보강효과에 관한 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Kim, Young-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • The laboratory tests and field plate load test were carried out to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comparison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. The settlement and the distribution of deformation were also estimated by using the finite element method. The magnitude of settlements on the geocell-reinforced subgrade and unreinforced subgrade are 6.8cm and 1.2cm, respectively.

  • PDF

Shear Friction Strength based on Limit Analysis for Ultra-High Performance Fiber Reinforced Concrete (소성 이론에 의한 강섬유 보강 초고성능콘크리트의 전단 마찰 강도식 제안)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) is distinguished from the normal concrete by outstanding compressive and tensile strength. Cracked normal concrete resists shear by aggregate interlocking while clamped by transverse reinforcement, which is called as shear friction theory. Cracked UHPFRC is expected to have a different shear transfer mechanism due to rather smooth crack face and post-cracking behavior under tensile force. Twenty-four push-off specimens with transverse reinforcement are tested for four different fiber volume ratio and three different ratio of reinforcement along the shear plane. The shear friction strength for monolithic concrete are suggested by limit analysis of plasticity and verified by test results. Plastic analysis gives a conservative, but reasonable estimate. The suggested shear friction factor and effectiveness factor of UHPFRC can be applied for interface shear transfer design of high-strength concrete and fiber reinforced concrete with post-cracking tensile strength.

Stability Analysis of Revetments in Meandering Channel using Two-Dimensional Numerical Model (2차원 수치모형을 이용한 만곡부 호안의 안정성 분석)

  • Chun, Myeong-Ho;Kim, Hyung-Jun;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.606-606
    • /
    • 2012
  • 최근 지구 환경변화에 따른 기후변화의 영향으로 이상홍수 발생의 위험성이 증가하고, 상습적으로 홍수피해가 반복되고 있다. 홍수피해의 원인 중 하나인 하천제방의 붕괴는 월류, 침식, 제체불안정, 구조물에 의한 파괴 등으로 구분되고 이 중 월류 및 침식은 제방 파괴의 주된 원인으로 최근 통계자료에 보고되고 있다. 제방붕괴의 주된 원인 중 하나인 침식파괴로부터 제방을 보호하기 위해 제내지 사면에 호안공을 설치하며, 하천설계기준 해설(2009)에서는 제방 또는 하안을 유수에 의한 파괴와 침식으로부터 직접 보호하기 위해 제방 앞비탈에 설치하는 구조물로 정의하고 있다. 특히 사행하천의 만곡부에서는 제방파괴의 위험성이 높을 뿐만 아니라 국부적으로 집중되는 유속분포는 제방의 안정성을 위협한다. 또한 원심력, 2차류(secondary flow) 등에 의한 수위상승 등에 의해 제방이 파괴되고 월류되어 홍수피해가 발생할 가능성이 큰 취약지점이라고 할 수 있다. 본 연구에서는 2차원 수치모형을 이용하여 만곡부 흐름 특성을 분석하고 수리실험을 통해 측정된 유속 및 수위분포 결과와 비교하여 분석하였다. 또한 수리실험에서 도출된 호안 붕괴 시의 흐름을 구현하여 호안 붕괴 시 국부유속 및 전단응력을 계산하고 만곡부 호안의 안정성을 위한 설계인자를 분석하였다. 연구결과로 제시된 만곡부 안정성을 위한 설계인자는 국외 호안공 설계식과 비교하여 국부유속 및 전단응력의 설계인자의 적합성을 검토하고 국내 만곡부 호안의 안정성 설계기법개발에 도움이 될 수 있는 설계인자를 제시하고자 한다.

  • PDF

The Initiation of Slip on Frictional Fractures (마찰 전단면의 전단거동과 에너지방출률)

  • Park, Chi-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.344-351
    • /
    • 2010
  • Slip along a frictional fracture can be approached as initiation and propagation of a mode II crack along its own plane. Fracture mechanics theories predict that under pure mode II loading initiation will occur when the energy release rate of the fracture attains a critical value ($G_{IIC}$), which is generally taken as a material property. For the past few years the rock mechanics group at Purdue University has investigated experimentally the dependence of $G_{IIC}$ on normal stress and on the frictional characteristics of a fracture. A number of experiments has been conducted first on acrylic, a material that, using photoelastic methods, allows visualization of the stress field ahead of the fracture tip; and later on gypsum, a rock model material with relatively low unconfined compression strength. The experimental investigation has been expanded to include other frictional materials with higher unconfined compression strength. Direct shear tests have been conducted on specimens made with cement paste. New observations together with previous experiments indicate that $G_{IIC}$ can only be considered a material property when the peak friction angle of the discontinuity is similar to the residual friction angle; otherwise the critical energy release rate increases with normal stress.

Development of Failure Criterion of Hot Mix Asphalt Using Triaxial Shear Strength Test (삼축압축시험을 이용한 아스팔트 혼합물의 파괴기준 개발)

  • Kim, Seong Kyum;Lee, Kwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.947-954
    • /
    • 2014
  • In general, Fracture of the material is not occurring of the maximum normal stress or the maximum shear stress failure in the state. Maximum normal stress and maximum shear stress in the state of Critical coupling from being destroyed based on the Mohr-Coulomb theory. Couple of different mixtures, including permeable asphalt pavement, SMA and dense-graded asphalt mixture, were used for compression triaxial test at $45^{\circ}C$ and $60^{\circ}C$. Mohr-Coulomb theory to the analysis of compression triaxial test result of the internal friction angle $38.9^{\circ}{\sim}46.9^{\circ}$ measured somewhat irregularly, but in the case of cohesion, depending on whether the temperature and immersion of the specimen appeared differently. In addition, Indirect tensile test and compression triaxial test of the asphalt mixture to determine the correlation between compression triaxial test results assessed as cohesion and internal friction angle calculated using the theoretical Indirect tensile strength and measured indirectly tensile strength were analyzed. The Measured & Predicted IDT St values tended to be proportional.

DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW (전단유동에서 자성사슬의 거동에 대한 직접수치해석)

  • Kang, T.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

Experimental Study on Mechanical Properties of Monofilament-reinforced Bottom Ash Mixture for Recycling Dredged Soil (준설토를 이용한 단섬유 보강 Bottom Ash 혼합 경량토의 역학적 특성에 관한 실험적 연구)

  • Kim, Yun-Tae;Han, Woo-Jong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2008
  • This paper investigates the mechanical characteristics of monofilament-reinforced bottom ash mixtures for recycling dredged soil. Reinforced bottom ash mixture is a lightweight soil added with monofilament in order to increase its shear strength. Test specimens were fabricated by various mixing conditions including monofilament content, its length and its diameter. Then several series of unconfined compression tests and direct shear tests were performed to investigate mechanical characteristics of reinforced lightweight soil. The experimental results indicated that stress-strain behaviors of reinforced lightweight soil were strongly influenced by mixing conditions of monofilament content, its length and diameter. The compressive strength of reinforced lightweight soil generally increased by adding monofilament. In this test, the maximum increase in compressive strength was obtained at 0.5% content and 4cm length of monofilament. These results were similar to those of direct shear tests. The unconfined compressive strength of reinforced lightweight soil with monofilament of 0.25mm in diameter was greater than that of reinforced lightweight soil with monofilament of 0.5mm in diameter.

Evaluation Technique of Nonlinear dynamic Viscoelasticity During Fatigue Process for Polymeric materials (고분자재료의 피로과정에서의 비선형 동적 점탄특성 평가법)

  • 조남주
    • The Korean Journal of Rheology
    • /
    • v.9 no.3
    • /
    • pp.97-102
    • /
    • 1997
  • 내피로성은 기계적 구조물로 사용되는 고분자재료에는 반드시 필요한 성질이며, 피 로거동은 재료특유의 비선형 동적 점탄특성과 아주 밀접한 관계가 있다. 본 연구에서는 피 로과정에서의 비선형 동적 점탄특성을 정량적, 연속적으로 측정할수 있는 시험 기기와 가해 준 변형에 대한 응답 응력파의 기본 응력파(선형적 응답)로부터의 차이를 직접 측정하여 이 를 규격화한 비선형 점탄성파라미터, NVP(Nonlinear Viscoelastic Parameter)라 명명한 새 로운 평가방법을 개발하였다. 그리고 고밀도 폴리에틸렌(HDPE) 배향물을 사용하여 그 평가 방법의 타당성을 조사한 결과 피로과정에서의 비선형동적 점탄특성을 나타내는 NVP가 증 가함에 따라 재료의 피로수명은 감소하였다. 따라서 NVP가 고분자재료의 내피로성을 평가 하는 척도로서 사용가능하다는 사실이 증명되었다. 또한 각 고조파 성분에대해 조사한 결과 인장형 피로시험양식에서는 고체입자 분산계의 전단변형에서 나타난 비선형 점탄성의 결과 와는 달리 2차 성분의 크기가 가장컸으며 NVP에의 기여도도 가장 크게 나타났다. 이는 변 형양식의 차이에 따른 결과를 볼수 있다.

  • PDF