• 제목/요약/키워드: 직접분사식 엔진

검색결과 123건 처리시간 0.023초

LPG를 보조적으로 사용한 직접분사식 디젤기관의 성능에 관한 연구 (The Effect of Auxiliary use LPG on the Performance of a D.I Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.138-145
    • /
    • 2005
  • Recently, the tightening of an available crude oil supplies has resulted in the development of intense consciousness for saving fuels. At the same time, some research programs have been launched to secure substitute energy sources for petroleum-derived fuels, and to reduce unhealthy products, such as CO, HC, NOx and smoke. To keep up with these trends in society, the regulation affecting diesel smoke may be greatly strengthened in a short time. In not too distant future, LPG and LNG are the most hopeful substitute fuels for automobile and truck uses. This paper discusses how to use such gaseous fuels in a diesel engine, and how much methods for introducing these fuels affect the engine performance.

직접분사식 디젤기관에서 바이오디젤 연료의 연소특성(2) (Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for a D.I. Diesel Engine(2))

  • 장세호
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, lots of researchers have been attracted to develop various alternative fuels in diesel engine. The use of biodiesel fuel(BDF) is an effective way of substituting diesel fuel in the long run. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. In this study, to investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. As a result, shorter ignition delays were observed for the biodiesel blend cases relative to the diesel oil. The pick value of premixed combustion for the rate of heat release is increased with decreasing C.F.W. temperature.

  • PDF

순수 DME의 직접분사식 디젤기관의 성능 및 배기가스 특성 (Engine Performance and Exhaust Emissions Characteristics of DI Diesel Engine Operated with Neat Dimethyl Ether)

  • 표영덕;이영재;김강출;김문헌
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.589-595
    • /
    • 2003
  • DME(Dimethyl ether) is an oxygenated fuel with a octane number higher than that of diesel oil. It meets the ULEV emission regulation and reduces the smoke to almost zero when used in a diesel engine. In the present study, engine performance and exhaust emissions were investigated with a conventional DI diesel engine which has a jerk type injection pump. Test results showed that the power with DME were almost same as that of pure diesel oil, and the brake thermal efficiency increased a little. Also, smoke index from DME engine showed nearly zero level, but NO$_{x}$ was increased compare to diesel oil.

고속 직접분사식 디젤엔진의 실린더내 유동특성에 관한 실험적 연구 (An Experimental Study of In-Cylindeer Flow Characteristics of a High Speed Direct Injection Diesel Engine)

  • 정경석
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.22-30
    • /
    • 1996
  • In-cylinder flow of a purpose-built small HSDI Hydra Diesel engine was investigated by laser Doppler velocimetry(LDV) during induction and compression processes. The flow was quantified in terms of ensemble-averaged axial and swirl velocities, normalized by the mean piston speed, at a plane located 12mm from the cylinder head and corresponding to the mid-plane of the diametrically-opposed quartz windows at an enigne speed of 1000rpm. The formation of toroidal vortices during the intake process and the evolution and decay of swirl motion during the compression process were observed. Turbulence at around TDC of compression became homogeneous and isotropic.

  • PDF

LPG를 보조적으로 사용한 직접분사식 디젤기관의 성능에 관한 연구(II) (The Effect of Auxiliary use LPG on the Performance of a D.I. Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.150-156
    • /
    • 2006
  • Recently, the tightening of available crude oil supplies has resulted in the development of intense consciousness for saving fuels. At the same time, some research programs have been launched to secure substitute energy sources for petroleum-derived fuels, and to reduce unhealthy products, such as CO, HC, NOx and smoke. To keep up with these trends in society, the regulation affecting diesel smoke may be greatly strengthened in a short time. In not too distant future, LPG and LNG are the most hopeful substitute fuels for automobile and truck uses. This paper discusses how to use such gaseous fuels in a diesel engine, and how to find out introducing these fuels affect the engine performance.

직접분사식 디젤엔진에서의 공해저감을 위한 전자분사 시스템에 관한 실험적 연구 (An Experimental Study on Electronic Injection System for Pollutant Reduction in a DI Diesel Engine)

  • 채재우;정영식;양준석;황재원
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.9-14
    • /
    • 1997
  • The pump-pipe-injector system is that most commonly used type of injection equipment for diesel engines. In this study, a new electromagnetic fuel injection system was designed and carried out the experiment of single cylinder direct injection(DI) diesel engine. This system do not need the cam shaft for fuel injection. The effects of the injection timing on the combustion process and emission were investigated. The results are that 1) atomization was improved, 2) combustion pressure was increased and ignition delay became shorter than before, 3) Low smoke level guarantee with more advanced injection timing without abnormal combustion but NOX concentration was increased as the injection time advanced.

  • PDF

저압 분사조건에 따른 직접분사 LPG의 분무 및 연소특성 연구 (An Study on Spray and Combustion Characteristics of Direct Injection LPG under Low Pressure Injection Condition)

  • 황성일;정성식;염정국;이진현
    • 한국가스학회지
    • /
    • 제20권1호
    • /
    • pp.52-61
    • /
    • 2016
  • 액화석유가스는 환경 친화적이며 에너지 효율성과 출력성능이 뛰어나 실용성이 높고, 경쟁연료에 비해 가격 경쟁력이 우수하기 때문에 촉망받는 대체연료 중 하나로 간주된다. 스파크점화 엔진에서 직분식 기술은 엔진 체적효율을 눈에 띄게 증가시키며, 상대적으로 더 높은 연소효율이 가능한 성층급기를 이용해 엔진을 작동시킨다. 본 연구에서는 가솔린직접분사 엔진의 원리를 적용하여 가시화 시스템을 장착한 연소실을 설계하였다. 이를 통해 스파크점화직분식 LPG의 점화성과 화염전파 과정을 디지털 방식으로 기록하고 분석하였다. 이러한 연구의 결과는 스파크점화직분식 LPG 엔진의 설계 및 최적화를 위한 광범위한 기초 자료로서 기여하고자 한다.

직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구 (In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine)

  • 김진수;전문수;윤정의
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

개선된 단일영역 열발생량 계산법을 사용한 소형 HSDI와 IDI엔진의 연소특성 비교에 관한 연구 (A Study on the Comparison of the Combustion Characteristics between a Small HSDI and an IDI Diesel Engine by Advanced One-zone Heat Release Analysis)

  • 이석영;정구섭;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.46-53
    • /
    • 2004
  • Heat release analysis is a very important method for understanding the combustion phenomena inside an engine cylinder. In this study, one-zone heat release analysis was used with the measured cylinder pressures of a HSDI(high speed direct injection) and IDI(indirect injection) diesel engines, Those have benefits of simple equation, fast speed, reliability. The objective of the study is to compare the combustion characteristics between a HSDI and an IDI. The result shoes that the maximum heat release rate of a HSDI is higher than that of an IDI because of long ignition delay period. The heat release curve of an IDI is more linear than that of a HSDI, thus is similiar to that of a SI engine. The combustion efficiency of a HSDI is higher than that of an IDI because of the smaller heat transfer loss of a HSDI. There is a suggestion here that an IDI engine has broad heat transfer area which include two combustion chambers, the connection passage of combustion chambers, etc.

LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구 (A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel)

  • 이민호;정동수;차경옥
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.