• 제목/요약/키워드: 직접분사식 엔진

검색결과 123건 처리시간 0.088초

터보과급 및 EGR을 사용하는 직접분사식 디젤엔진의 연소특성에 미치는 Ar과 He첨가의 영향 (Effects of Ar/He Dilution on Combustion Characteristics in DI Diesel Engine using Turbocharging and EGR)

  • 권영동;김용모;박신배;백현종;이동권
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.140-156
    • /
    • 1997
  • The combustion characteristics of DI Diesel engine using turbocharging and EGR are numerically studied. Computations are carried out for the wide range of trubochyarged pressures, EGR ratios, and Ar/He dilution. Numerical results indicate that the Ar/He dilution in the intake gas significantly influence the engine performance, the spray combustion process, and the pollutant formation.

  • PDF

스월형 GDI 엔진의 연료혼합특성 연구 (Aspects of Mixture Formation in a Swirl Type GDI Engine)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.260-271
    • /
    • 2003
  • For the Purpose of understanding the mixing phenomena of a GDI(Gasoline Direct Injection) engine, the spray behaviors and fuel distributions were investigated in a single cylinder transparent GDI engine. The experimental engine is a swirl type GDI engine with a SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurement of the fuel distributions. The effects of SCV opening angles and the injector specifications on the fuel distribution characteristics were investigated. As a result, it was found that the SCV opening angle had a great effect on the fuel distributions in the late stage of compression process by changing the flow fields in the combustion chamber.

Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구 (A Prediction of DI Diesel engine Performance using the Multizone Model)

  • 황재원;;박재근;장기현;채재우
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

순수 DME 및 DME 혼합연료의 직접분사식 디젤기관의 성능 및 배기가스 특성에 관한 연구 (A Study on Performance and Exhaust Emissions of DI Diesel Engine Operated with Neat DME and DME Blended Fuels)

  • 표영덕;김강출;이영재;김문헌
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.75-82
    • /
    • 2003
  • DME is a good alternative fuel to reduce the smoke remarkably when used in a diesel engine, while problems concerned with low lubricity and high compressibility exist. In the present study, single cylinder DI diesel engine was operated with neat DME and DME blended fuels which are DME-diesel blended fuel and DME-propane blended fuel. The results showed that the power of the neat DME and DME blended fuels was the same as that of pure diesel oil, and the specific energy consumption slightly increased. In addition, smoke emission was considerably reduced with the increase of DME content up to zero level, but NOx emission was slightly increased.

EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석 (Numerical studies for combustion processes and emissions in the DI diesel engines using EGR)

  • 권영동;이재철;김용모;김세원
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.

가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구 (A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine)

  • 차준표;윤성준;이석훤;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis)

  • 이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가 (Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine)

  • 박철웅;조시현;김태영;조규백;이장희
    • 한국가스학회지
    • /
    • 제19권4호
    • /
    • pp.22-28
    • /
    • 2015
  • LPG가 수송용 연료로서 경쟁력을 유지하기 위해서는 지속적인 기술개발을 통해 휘발유와의 연비격차를 감소시키고 후처리시스템 등에 의한 가격 부담을 낮추어야 한다. 이에 본 연구에서는 안정적인 희박연소 구현을 통한 연비개선을 얻기 위해 실린더 중앙에 점화플러그와 연료분사기가 인접해 있고, 연료가 분사된 후 바로 점화가 이루어지도록 하는 분무유도방식의 LPG 직접분사엔진을 개발의 일환으로 연소제어인자의 변화에 따른 연소 특성을 분석하였다. 안정적인 연소를 위해 국부적으로 농후한 혼합기를 형성하는 성층희박연소의 특성상 일정 수준이상의 질소산화물이 배출되는 문제점을 갖고 있다. 질소산화물 저감을 위해 EGR을 적용한 결과 연료소비율과 THC의 배출은 약간 증가하지만 $NO_x$배출은 약 15% 저감되었다. EGR 적용에 의한 연소속도의 감소는 초기 화염발달 시기에 집중되어 나타났으며 흡입공기의 희석효과에 의해 EGR율이 증가할수록 최대 열방출율 및 열방출율 증가 기울기가 감소하였다.

직분식 가솔린엔진에서 피스톤 형상이 연료 혼합기의 형성과 거동에 미치는 영향 . (Effect of Piston Cavity Geometry on Formation and Behavior of Fuel Mxture in a DI Gasoline Engine)

  • 김동욱;강정중;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.82-89
    • /
    • 2005
  • This study was performed to investigate the behavior and spatial distribution of fuel mixtures with different wall angle and diameter of piston cavity in a DI gasoline engine. The spatial distribution of fuel mixtures after impingement of the spray against a piston cavity is one of the most important. factors for the stratification of fuel mixture. Thus, it is informative to understand in detail the behavior and spatial distribution of fuel mixtures after impingement in the cavity. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze the behavior and distribution of fuel mixtures inside cylinder by exciplex fluorescence method. The exciplex system of fluorobenzene/DEMA in non-fluorescing base fuel of hexane was employed. Cavity wall angle was defined as an exterior angle of piston cavity. Wall angles of the piston cavity were set to 30, 60 and 90 degrees, respectively. The spray impinges on the cavity and diffuses along the cavity wall by its momentum. In the case of 30 degrees, the rolling-up moved from the impinging location to the round and fuel-rich mixture distributed at periphery of cylinder. In the case of 60 and 90 degrees, the rolling-up recircurated in the cavity and fuel mixtures concentrated at center region. High concentrated fuel vapor phase was observed in the cavity with 90 degrees. From. present study, it was found that the desirable cavity wall angle with cavity diameter for stratification in a Dl gasoline engine was demonstrated.

GDI 엔진에 DCT 적용에 따른 배기 배출물 특성에 미치는 영향 (The Effect of Dual Clutch Transmissions on the Stability Emissions Characteristic in a Gasoline Direct Injection Engine)

  • 김광래;노현구
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.156-161
    • /
    • 2015
  • This paper described the effect of dual clutch transmissions on the stability emissions characteristic in a GDI engine at vehicle Inspection and Maintenance(I/M) program. In order to investigate the influence of direct injection gasoline engine with DCT, the experimental apparatus consisted of GDI engine with 4 cylinder, dynamometer and exhaust emissions analyzer. Analyzed emission gas include CO, HC and NOx results that DCT vehicle in the case of NOx, HC in automatic transmission vehicles less than 1/2 level was confirmed to be exhausted. However vehicle specific power increases CO also has increased.