• Title/Summary/Keyword: 직립방파제

Search Result 47, Processing Time 0.02 seconds

Reliability Design of Breakwater Armor Blocks Considering Variability in Wave Direction (파향의 변동성을 고려한 방파제 소파블록의 신뢰성 설계)

  • 서경덕;권혁민;윤현덕
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.82-91
    • /
    • 2002
  • 방파제에 대한 신뢰성 설계 방법은 유럽과 일본을 중심으로1980년대 중반 이후로 발전되어 왔다. 유럽에서는 van der Meer(1988a)가 방파제 피복재의 설계에 확률론적인 방법을 도입하였고, Burcharth(1991)는 사석방파제에 대하여 부분안전계수(partial safety factor)를 이용한 신뢰성 설계 방법을 제시하였다 최근 Burcharth and Sørensen(1999)은 PIANC (Permanent International Association of Navigation Congress) Working Groups의 결과를 요약하여 사석방파제와 직립방파제에 대한 부분안전계수들을 확립하였다. (중략)

  • PDF

유공방파제의 반사특성에 관한 수리모형실험

  • 박우선;전인식;오영민;이달수
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.55-58
    • /
    • 1993
  • 유공식 방파제는 기존 직립 혼성방파제의 케이슨 전면에 유공벽과 유수실을 설치함으로써 교량이 유공벽을 통과하여 유수실내로 진입할 때 와유 등에 의해 접근 파랑에너지를 감소시킬 수 있도록 고안된 구조형식을 갖는다. 따라서, 방파제 주변의 항로유지에 있어서 기존 직립 혼성방파제에 비해 우수한 특성을 지닌 형태이다. 이러한 방파제 형태는 일본에서는 다수 시공되어 성공적으로 운영되고 있으나 국내에서는 아직도 이렇다 할 시공실적이 없다. (중략)

  • PDF

Reliability-Based Design Optimization for a Vertical-Type Breakwater with an Emphasis on Sliding, Overturn, and Collapse Failure (직립식 방파제 신뢰성 기반 최적 설계: 활동, 전도, 지반 훼손으로 인한 붕괴 파괴를 중심으로)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.50-60
    • /
    • 2024
  • To promote the application of reliability-based design within the Korean coastal engineering community, the author conducted reliability analyses and optimized the design of a vertical-type breakwater, considering multiple limit states in the seas off of Pusan and Gunsan - two representative ports in Korea. In this process, rather than relying on design waves of a specific return period, the author intentionally avoided such constraints. Instead, the author characterized the uncertainties associated with wave force, lift force, and overturning moment - key factors significantly influencing the integrity of a vertical-type breakwater. This characterization was achieved by employing a probabilistic model derived from the frequency analysis results of long-term in-situ wave data. The limit state of the vertical-type breakwater encompassed sliding, overturning, and collapse failure, with the close interrelation between wave force, lift force, and moment described using the Nataf joint probability distribution. Simulation results indicate, as expected, that considering only sliding failure underestimates the failure probability. Furthermore, it was shown that the failure probability of vertical-type breakwaters cannot be consistently secured using design waves with a specific return period. In contrast, breakwaters optimally designed to meet the reliability index requirement of 𝛽-3.5 to 4 consistently achieve a consistent failure probability across all sea areas.

Design of Breakwater for the Safety of VLFS (VLFS 안전성 확보를 위한 방파제 설계 연구)

  • Cho, K.N.;Yu, K.H.;Kang, J.M.;Yoon, M.C.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.217-223
    • /
    • 2002
  • 초대형부유식 해상구조물의 안전성 확보를 위한 방파제 설계를 수행하여 그 효용성을 검증하고 관련 구조물의 설계에 대한 지침을 제공하였다. 초대형부유식 구조물의 설치 위치에 따라 파랑 하중을 계산하였고, 이 하중에 대한 최적의 직립식 방파제 단면을 통용되고 있는 Goda 식에 의하여 scantling 하였다. 케이슨의 안전성 검증을 위하여 유한요소해석을 수행하였고, 최종적으로 VLFS의 안전성 확보를 위한 하나의 방파제 설계도를 제시하였다.

  • PDF

Influence of Water Depth on Climate Change Impacts on Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 미치는 기후변화영향에 대한 수심의 효과)

  • Kim, Seung-Woo;Kim, So-Yeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.179-188
    • /
    • 2012
  • Performance analyses of vertical breakwaters were conducted for fictitiously designed breakwaters for various water depths to analyze the influence of climate change on the structures. The performance-based design method considering sea level rise and wave height increase due to climate change was used for the performance analysis. One of the problems of the performance-based design method is the large calculation time of wave transformation. To overcome this problem, the SWAN model combined with artificial neural network was used. The significant wave height and principal wave direction at the breakwater site are quickly calculated by using a trained neural network with inputs of deepwater significant wave height and principal wave direction, and tidal level. In general, structural stability becomes low due to climate change impacts, but the trend of stability is different depending on water depth. Outside surf zone, the influence of wave height increase becomes more significant, while that of sea level rise becomes negligible, as water depth increases. Inside surf zone, the influence of both wave height increase and sea level rise diminishes as water depth decreases, but the influence of wave height increase is greater than that of sea level rise. Reinforcement and maintenance policies for vertical breakwaters should be established with consideration of these results.

Reliability Analysis of Maximum Overtopping Volume for Evaluating Freeboard of Vertical Breakwaters (직립식 방파제의 마루높이 산정을 위한 최대월파량에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • A reliability analysis model is developed for evaluating the crest freeboard of vertical breakwaters based on the concepts of maximum overtopping volume of individual wave. A reliability function is formulated by defining the margin of admissible overtopping volume and maximum overtopping volume that is depend on the number of overtopping waves, dimensionless crest freeboard, and mean overtopping discharge. In addition, Level III MCS technique is straightforwardly suggested by which the related empirical parameters to reliability function can be considered to be random variables with the wide range of different uncertainties. It can be possible to calculate the probabilities of failure according to the relative crest freeboard with the variations of the incident wave directions, the structural types of vertical breakwaters, and admissible overtopping volumes in conditions of the long and short crested-waves.

Evaluation of Target Failure Level on Sliding Mode of Vertical Breakwaters using Safety Factors (안전율을 이용한 직립 방파제의 활동에 대한 목표파괴수준 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can evaluate the target failure/safety levels on any failure modes of harbor structures as a function of central safety factor. Unlike the calibration method based on the average safety level of conventional design criteria, the target failure/safety level can be directly evaluated by only using central safety factors of the harbor structures which have been designed by safety factor method during the past several decade years. Several mathematical relationships are represented to straightforwardly connect the conventional safety factor design method with reliability-based design method. Even though limited data have been used in applying Monte-Carlo simulation method to sliding failure mode of the vertical breakwaters, it is found that target reliability indices evaluated by the suggested method in this paper is satisfactorily agreement with new criteria of reliability index of Japan.

Seismic Stability Evaluation of the Breakwater Using Dynamic Centrifugal Model Test (동적원심모형 시험을 이용한 지진 시 방파제의 내진안정성 검토)

  • Kim, Young-Jun;Jang, Dong-In;Kawk, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.39-50
    • /
    • 2021
  • Recently, as the occurrence of earthquakes with a magnitude of 5.0 or higher in Korea increases, many studies and interests in seismic design are increasing. A lot of damage was caused by the Pohang earthquake in 2017, and port facilities such as a breakwater were also damaged. This study analyzed the dynamic behavior of the upright breakwater, an external facility, based on a centrifugal model experiment. A series of centrifugal model test was conducted by three different seismic waves such as Pohang Earthquake Wave, Artificial Wave I, and II. As a result, the dynamic behavior of upright breakwater was analyzed. The review showed that acceleration amplification tends to be suppressed as breakwater foundation ground increases support and stiffness through DCM reinforcement and riprap replacement.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.