• Title/Summary/Keyword: 직립구조물

Search Result 54, Processing Time 0.03 seconds

Damages on lee side of breakwaters by wave overtopping: Case study (월파에 의한 경사제 배후면 피해 : 실험사례)

  • Kim, Young-Taek;Lee, Jong-In
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.716-716
    • /
    • 2012
  • 최근 항만구조물을 설계함에 있어 대수심 및 고파랑 지역에 설치되는 외곽시설의 상당수는 직립식 케이슨 혼성제 단면을 채택하고 있다. 이는 상대적으로 수심이 깊고, 설계파와 같은 외력 조건이 크기 때문에 경사제에 비하여 경제성 및 시공성이 유리하기 때문으로 판단된다. 그렇지만 아직까지 소규모 항만 및 어항시설에 있어 경사제를 채택하고 있다. 본 연구에서는 이와 같은 경사식 구조물을 설계함에 있어 월파에 의한 방파제 배후 경사면에 피복된 피복재의 안정성을 검토하며, 실험사례를 통하여 최적 설계안 및 설계방향을 제시하고자 한다. 경사식 구조물 배후 사면 피복재의 안정 중량에 대해서는 우리나라의 항만 구조물의 설계기준(항만 및 어항설계기준, 2005) 뿐만 아니라 국외의 설계기준(CEM, Coastal engineering manual, 2005 등)에서도 아직까지 설계법을 제시하고 있지 않고 있다. 본 연구에서 수행한 단면 수리모형실험에서는 1/50의 실험축척을 적용하여 대상 외곽 구조물에 대하여 수리특성과 안정성을 검토하였다. 특히 경사제 배후의 안정성 확보를 위하려 동일 구간에 대하여 설계파 조건 등을 중심으로 총 9개의 실험안을 설정하여 안정성을 검토하였다. 아래 그림은 이중 초기 설계안과 최종적으로 제안된 제시안에 대한 완성모형, 실험장면 및 결과이다. 일반적으로 접안시설과 외곽시설이 어느 정도 이격되어 있어 적정량의 월파를 허용할 수 있는 경우 상치콘크리트의 형상 및 마루높이을 변경하여 월파의 낙하 및 도달거리를 배후면의 안정성을 확보할 수 있을 정도로 유도함으로써 안정적인 구조물 설계가 가능할 것으로 판단된다.

  • PDF

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.

Effects of Stem Wave on the Vertical Breakwater (해안구조물 전면의 Stem Wave 특성에 관한 연구)

  • 박효봉;윤한삼;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.138-143
    • /
    • 2001
  • Based on mild slope equation and parabolic approximation the forward diffraction of monochromatic waves by a straight breakwater are studied numerically. The characteristics and effects of stem wave along breakwater and the relations between the stem wave and incident wave angle are discussed.

  • PDF

Estimation of Wave Pressure on Vertical Breakwaters due to Tsunamis (직립 방파제에 작용하는 지진해일 파압산정)

  • Hong, Seong-Soo;Ha, Tae-Min;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • 국내 지진해일에 관한 연구 중, 구조물에 직접적인 영향을 미치는 파력에 대한 연구가 현재 미미한 실정이다. 본 연구에서는 파고와 입사각, 그리고 유의주기를 기지값으로 하여 파압을 계산하는 Goda(1974)가 제안한 파압공식을 이용하여 파압을 산정하였다. 파고는 Cho(1995) 모델로 산정하였으며 이를 임원항구의 방파제에 적용하였다.

  • PDF

Experimental Study on Hydraulic Characteristics of Wave Dissipating New Armor Unit (새로운 소파블록의 수리특성에 관한 실험적 연구)

  • 김인철;박영우;유철희;권혁민
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.87-97
    • /
    • 2003
  • 외해로부터 내습하는 파랑을 차단하므로서 해안의 세굴, 침식 등을 방지하고 항내의 정온을 유지하고 항만시설물을 보호하기 위하여 축조되는 방파제, 호안 등의 구조물 형식에는 경사제, 직립제, 혼성제 등 여러 가지가 있다 이 중 경사제는 표면을 파력에 충분히 대항할 수 있는 크기의 사석이나 콘크리트 블록을 쌓아 파랑을 경사면에서 쇄파시켜 에너지를 소멸시킴으로서 소파기능을 발휘한다. (중략)

  • PDF

Seismic Stability Evaluation of the Breakwater Using Dynamic Centrifugal Model Test (동적원심모형 시험을 이용한 지진 시 방파제의 내진안정성 검토)

  • Kim, Young-Jun;Jang, Dong-In;Kawk, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.39-50
    • /
    • 2021
  • Recently, as the occurrence of earthquakes with a magnitude of 5.0 or higher in Korea increases, many studies and interests in seismic design are increasing. A lot of damage was caused by the Pohang earthquake in 2017, and port facilities such as a breakwater were also damaged. This study analyzed the dynamic behavior of the upright breakwater, an external facility, based on a centrifugal model experiment. A series of centrifugal model test was conducted by three different seismic waves such as Pohang Earthquake Wave, Artificial Wave I, and II. As a result, the dynamic behavior of upright breakwater was analyzed. The review showed that acceleration amplification tends to be suppressed as breakwater foundation ground increases support and stiffness through DCM reinforcement and riprap replacement.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.

Development of Time-Dependent Reliability-Based Design Method Based on Stochastic Process on Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 확률과정에 기반한 시간의존 신뢰성 설계법 개발)

  • Kim, Seung-Woo;Cheon, Sehyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.305-318
    • /
    • 2012
  • Although the existing performance-based design method for the vertical breakwater evaluates an average sliding distance during an arbitrary time, it does not calculate the probability of the first occurrence of an event exceeding an allowable sliding distance(i.e. the first-passage probability). Designers need information about the probability that the structure is damaged for the first time for not only design but also maintenance and operation of the structure. Therefore, in this study, a time-dependent reliability design method based on a stochastic process is developed to evaluate the first-passage probability of caisson sliding. Caisson sliding can be formulated by the Poisson spike process because both occurrence time and intensity of severe waves causing caisson sliding are random processes. The occurrence rate of severe waves is expressed as a function of the distribution function of sliding distance and mean occurrence rate of severe waves. These values simulated by a performance-based design method are expressed as multivariate regression functions of design variables. As a result, because the distribution function of sliding distance and the mean occurrence rate of severe waves are expressed as functions of significant wave height, caisson width, and water depth, the first-passage probability of caisson sliding can be easily evaluated.

Numerical Analysis of Runup and Wave Force Acting on Coastal Revetment and Onshore Structure due to Tsunami (해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Yeh, Harry;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.289-301
    • /
    • 2009
  • In this work, wave run-up heights and resultant wave forces on a vertical revetment due to tsunami (solitary wave) are investigated numerically using a numerical wave tank model called CADMAS-SURF (CDIT, 2001. Research and Development of Numerical Wave Channel (CADMAS-SURF). CDIT library, No. 12, Japan.), which is based on a 2-D Navier-Stokes solver, coupled to a volume of fluid (VOF) method. The third order approximate solution (Fenton, 1972. A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No.2, pp.257-271) is used to generate solitary waves and implemented in original CADMAS-SURF code. Numerical results of the wave profiles and forces are in good agreements with available experimental data. Using the numerical results, the regression curves determined from the least-square analysis are proposed, which can be used to determine the maximum wave run-up height and force on a vertical revetment due to tsunami. In addition, the capability of CADMAS-SURF is demonstrated for tsunami wave forces acting on an onshore structure using various configuration computations including the variations of the crown heights of the vertical wall and the position of the onshore structure. Based on the numerical results such as water level, velocity field and wave force, the direct effects of tsunami on an onshore structure are discussed.

Runup and Overtopping Velocity due to Wave Breaking (쇄파에 의한 처오름과 월파유속)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.606-613
    • /
    • 2007
  • This study investigates the behavior of a plunging wave and its associated runup and overtopping through velocity measurements and suggests an empirical formula for overtopping velocities on a structure. The plunging wave breaking in front of the structure generates very bubbly flow fields. For measurements of the two phase flow field of the breaking wave, particle image velocimetry and a modified optical method were employed. The obtained velocity fields were discussed in respect of the process of wave impinging, runup and overtopping. The overtopping velocity distribution is found to have a nonlinear profile showing a maximum magnitude at its front part. The relationship of self-similarity among dimensionless parameters is observed and used to obtain the regression formula to depict the overtopping velocity.