• Title/Summary/Keyword: 직류 스퍼터링

Search Result 39, Processing Time 0.038 seconds

Effect by Temperature Distribution of Target Surface during Sputtering by Bipolar Pulsed Dc and Continuous Dc (직류와 양극성 펄스직류에 의한 스퍼터링시 타겟 표면의 온도 분포와 그 영향)

  • Yang, Won-Kyun;Joo, Jung-Hoon;Kim, Young-Woo;Lee, Bong-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • We measured the temperature of target surface inducing by various physical phenomenon on magnetron sputtering target and confirmed the possibilities if the temperature distribution could affect plasma and deposited thin film. The target of magnetron sputtering has two types: round type and rectangular type. In a rectangular target, the concentrated discharge area by corner effect by magnetic field and non-uniform erosion of target are generated. And we found the generation of non-uniform temperature distribution on the target surface from this. This area was $10{\sim}20^{\circ}C$ higher than non-sputtering area. And if particles are generated during sputtering process, they were $20^{\circ}C$ higher than the area where is higher than non-sputtering area. These effects result in non-uniformity of thin films, crack of ceramic target, and shortening target life by non-uniform erosion.

Analysis of Abnormal Reduction in Electrical Resistivity by Temperature Increase of ZnO Semiconductor (산화아연 반도체의 온도 증가에 따른 비정상적인 비저항의 감소에 대한 해석)

  • Jang, Kyung-Soo;Park, Hyeong-Sik;Ryu, Kyung-Ryul;Jung, Sung-Wook;Jeong, Han-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.144-144
    • /
    • 2010
  • 투명 산화물 반도체로 가장 널리 사용되는 산화아연 반도체의 온도 증가에 따른 비정상적인 비저항의 감소를 보고 한다. 이는 직류 마그네트론 스퍼터링 시스템을 이용하여 연구를 진행하였으며, 공정 변수 중 압력 가변만 진행하였다. 상온에서의 전류 전압 곡선을 바탕으로 온도 증가에 따른 전류-전압 곡선 해석, 결정성 확인을 위하여 XRD 장비를 이용하였으며, 화학적인 조성 확인을 위해 EDS 장비를 이용하였다. 이를 통해 아연과 산소의 비율, (100) 결정성 방향 등의 결과를 통해 온도 증가에 따른 비정상적인 전기적 비저항 감소에 대한 현상을 확인하였다.

  • PDF

Growing Behavior of AlN Thin Film Deposited by Asymmetric Bipolar Pulsed DC Reactive Sputtering (비대칭 펄스 직류 반응성 스퍼터링으로 증착된 AlN 박막의 성장 거동)

  • 김주형;이전국;안진호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • 비대칭 펄스 직류 반응성 스퍼터링을 이용하여 상온에서 Si(100) 기판 위에 AlN 박막을 증착하였다. 100 kHz에서 200 kHz까지 펄스 주파수의 변화 및 70%에서 90%까지 duty cycle의 변화에 따른 아크 발생과 AlN 박막의 결정성 그리고 미세 조직을 관찰하였다. Duty cycle에서 양의 펄스 유지 시간이 증가함에 따라 증착 중에 아크 발생 빈도가 현저히 감소하였고 AlN 박막의 입자 크기와 결정상의 c축 배향성이 증가하였다. 반면에 펄스 주파수 변화에 따른 아크 발생은 일정한 경향을 나타내지 않았지만 전반적으로 많은 아크가 발생했다. 아크 발생 빈도가 늘어남에 따라 c축 배향성이 감소하였다. 양의 펄스 유지 시간과 펄스 주파수가 감소함에 따라 박막의 증착 속도는 증가하였으며 440$\AA$/min의 높은 증착 속도를 나타냈다.

  • PDF

High Density Plasma Sputtering System (HIPASS) 방법을 통한 TiN 박막 증착 및 특성 평가

  • Kim, Gi-Taek;Yang, Won-Gyun;Lee, Seung-Hun;Kim, Do-Geun;Kim, Jong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.254-254
    • /
    • 2013
  • 마그네트론 스퍼터링은 그 단순한 구조로 인하여 신뢰성과 확장성이 높은 기술이다, 이로 인해 DLC, ITO 등의 산업 분야에서 많이 사용하는 박막 공정 기술이다. 하지만 인듐과 같은 희토류 금속의 가격이 최근 상승함에 따라 나타난 낮은 타겟 효율성의 문제와 낮은 파워 밀도로 인한 기판의 추가적인 bias 추가에 따른 비용상승, 그리고 reactive 스퍼터링 시 낮은 증착률 등의 문제점들 또한 존재한다. 이러한 단점들을 해결하기 위해 많은 연구들이 이루어 졌으며, 높은 파워 밀도를 위해 High power Impulse Plasma Magnetron Sputtering (HIPIMS) 기술과 타겟 사용률을 높이기 위한 High Target Utilization Sputtering (HITUS) 등의 기술 등이 개발되었다. 본 연구에서는 직류 전원을 사용한 High density Plasma Sputtering System (HIPASS)이라 명하는 고밀도 원거리 플라즈마 소스를 이용한 스퍼터링 이용해 증착한 박막의 특성을 연구 하였다. Hollow cathode discharge에서 발생한 고밀도 플라즈마가 외부 유도 자장 코일에 의하여 타겟 표면까지 도달하게 되며, 스퍼터링 타겟의 고전압 bias에 의해 플라즈마 이온들이 가속이 이루어져 스퍼터링 공정이 이루어 지게 된다. 본 연구의 공정에서 타겟 사용 효율은 최대 90%까지 이며, 원거리 플라즈마 소스에서의 이온으로 스퍼터링을 실시함으로 인해 스퍼터링 전압과 전류의 독립적인 조절이 가능 하다. 본 연구에서 HIPASS을 이용하여 기판에 추가적인 전압 인가 없이 Ti 타겟과 아르곤/질소 혼합가스를 사용하여 TiN 박막을 증착 하였다. TiN의 증착률은 약 44 nm/min였으며, 이 박막의 XRD 분석 결과 TiN (111), (200), (220) 면들이 관찰이 되었다. 높은 스퍼터링 입자 에너지에서 증착 된 TiN 박막에서 우선적으로 나타나는(200)과 (220) 면들이, 본 실험에서는 기판에 추가적인 전압인가 없이도 우선방위 성장을 보였다. 이 박막의 micro-hardness 측정 결과 약 34.7 GPa이며, 이는 UBM 이나 HIPIMS에서 보여주는 결과에 준하거나 그 이상의 수치이다. 이와 같은 결과는 본 연구에서 사용한 HIPASS 증착 공정이 높은 스퍼터링 입자 에너지를 가지기에 고밀도의 TiN 박막이 증착 된 결과로 볼 수 있다.

  • PDF

Properties of TiN Thin Films Synthesized with HiPIMS and DC Sputtering (HiPIMS와 DC 스퍼터링으로 제조한 TiN 박막 특성)

  • Yang, Ji-Hun;Byeon, In-Seop;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.93-93
    • /
    • 2017
  • 고전력 펄스 전원공급장치를 이용한 마그네트론 스퍼터링(high-power impulse magnetron sputtering; HiPIMS)과 직류(direct current; DC) 전원공급장치를 이용한 마그네트론 스퍼터링(DC 스퍼터링)을 이용하여 제조한 티타늄 질화물(titanium nitride; TiN) 박막의 특성을 비교하였다. HiPIMS와 DC 스퍼터링 공정 중에 빗각증착을 적용하여 TiN 박막의 미세구조와 기계적 특성의 변화를 확인하였다. TiN 박막을 코팅하기 위한 기판으로 스테인리스 강판(SUS304)과 초경(cemented carbide; WC-10wt.%Co)을 사용하였다. 기판은 알코올과 아세톤으로 초음파 처리를 실시하여 기판 표면의 불순물을 제거하였다. 기판 청정 후 진공용기 내부의 기판홀더에 기판을 장착하고 $2.0{\times}10^{-5}torr$의 기본 압력까지 진공배기를 실시하였다. 진공 용기의 압력이 기본 압력에 도달하면 아르곤(Ar) 가스를 진공용기 내부로 ${\sim}10^{-2}torr$의 압력으로 주입하고 기판홀더에 라디오 주파수(radio frequency; rf) 전원공급장치를 이용하여 - 800 V의 전압을 인가하여 글로우 방전을 발생시켜 30 분간 기판 표면의 산화막을 제거하는 기판청정을 실시하였다. 기판청정이 완료되면 기본 압력까지 진공배기를 실시하고 Ar과 질소($N_2$)의 혼합 가스를 진공용기 내부로 ${\sim}10^{-3}torr$의 압력으로 주입하여 HiPIMS와 DC 스퍼터링으로 TiN 박막 제조를 실시하였다. 빗각의 크기는 $45^{\circ}$$-45^{\circ}$이었다. 제조된 TiN 박막은 주사전자 현미경, 비커스 경도 측정기 그리고 X-선 회절 분석기를 이용하여 특성을 분석하였다. HiPIMS로 제조한 TiN 박막은 기판 전압을 인가하지 않아도 색상이 노란색을 보이지만, DC 스퍼터링으로 제조한 TiN 박막은 기판 전압을 인가하지 않으면 노란색을 보이지 않고 어두운 갈색에 가까운 색을 보였다. TiN 박막의 경도는 HiPIMS로 제조한 TiN 박막이 DC 스퍼터링으로 제조한 TiN 박막보다 높았다. 이러한 TiN 박막의 특성 차이는 DC 스퍼터링과 비교하여 높은 HiPIMS의 이온화율에 의한 결과로 판단된다. 빗각을 적용한 TiN 박막은 미세구조 변화를 보였으며 이러한 미세구조 변화는 TiN 박막의 특성에 영향을 미치는 것을 확인하였다.

  • PDF

스퍼터링 공정 중 알루미늄 타겟 오염이 알루미늄 산화막 증착에 미치는 영향

  • Lee, Jin-Yeong;Gang, U-Seok;Heo, Min;Lee, Jae-Ok;Song, Yeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.2-302.2
    • /
    • 2016
  • 알루미늄 산화막 스퍼터링 공정 중 타겟이 반응성이 있는 산소와 결합하여 산화되는 타겟 오염은 증착 효율의 감소[1]와 방전기 내 아크 발생을 촉진[2]하여 이를 억제하는 방법이 연구되어 왔다. 본 연구에서는 알루미늄 산화막 증착 공정 중 타겟 오염 현상이 기판에 증착된 알루미늄 산화막 특성이 미치는 영향을 분석하였다. 실험에는 알루미늄 타겟이 설치된 6 인치 웨이퍼용 직류 마그네트론 스퍼터링 장치를 활용하였다. 위 장치에서 공정 변수 제어를 통해 타겟 오염 현상의 진행 속도를 제어하였다. 공정 중 타겟 오염 현상을 타겟 표면 알루미나 형성에 따른 전압 강하로 관찰하였고 타겟 오염에 의한 플라즈마 변화를 원자방출분광법을 통해 관찰하였다. 이 때 기판에 증착 된 알루미나 박막의 화학적 결합 특성을 XPS depth로 측정하였으며, 알루미나 박막의 두께를 TEM을 통해 측정하였다. 측정 결과 타겟 오염 발생에 의해 공정 중 인가 전압 감소와 타겟 오염에 소모된 산소 신호의 감소가 타겟 오염 정도에 따라 변동되었다. 또한 공정 중 타겟 오염 정도가 클수록 기판에 증착한 막과 실리콘 웨이퍼 사이에 산소와 실로콘 웨이퍼의 화합물인 산화규소 계면의 형성 증가됨을 확인했다. 위 현상은 타겟 오염 과정 중 발생하는 방전기 내 산소 분압 변화와 막 증착 속도 변화가 산소의 실리콘 웨이퍼로의 확산에 영향을 준 것으로 해석되었다. 위 결과를 통해 스퍼터링 공정 중 타겟 오염 현상이 기판에 증착 된 알루미나 막 및 계면에 미치는 영향을 확인하였다.

  • PDF

마그네트론 스퍼터링에서 전자기력에 의한 셔터의 기계적 움직임 특성

  • Kim, Dong-Hun;Im, Jin-Hyeong;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.230.2-230.2
    • /
    • 2014
  • 스퍼터링 공정은 보통 수백 eV로 가속된 이온에 의한 고체 타겟으로부터 입자의 방출로서 정의할 수 있다. 스퍼터된 입자는 열에너지보다 운동에너지가 크며 박막성장은 저에너지의 입자충격, 불활성 가스이온, 타겟부터 산란된 입자에 의하여 지배된다. 본 연구는 직경 2인치의 원형 Cr 타겟을 셔터를 닫고 예비 스퍼터링 할 때 셔터(SUS 304 0.1t)가 전자기력을 받아서 기계적으로 진동하는 현상을 규명하고자 하였다. 셔터의 하단부를 챔버의 중심축에 고정시켜서 타겟과 평행하도록 수 cm 떨어뜨려서 위치한 뒤 직류 마그네트론 플라즈마를 발생시켰을 때 DC power에 따라서 각각 움직임을 동영상촬영을 진행하였고, 셔터의 중심을 실로 매달아서 자유롭게 움직일 수 있도록 한 뒤 플라즈마가 발생했을 때 기계적인 움직임을 중점적으로 관찰했다. 움직임의 차이를 비교하기 위해서 셔터의 크기를 줄여가며 일정한 DC power에서 실험을 진행했고, 자세한 관찰을 위해서 초고속카메라(210 fps)로 짧은 순간의 변화를 비교했다. 실험조건은 5, 10 mTorr, DC power 30, 40, 50, 70, 100 W, Ar 30 sccm, 셔터의 크기 10, 20, 30, 40, 50, 60 mm로 실시했다. 압력이 낮아질수록, 셔터의 크기가 작을수록, DC power가 커질수록 움직임변화가 커졌고, 진동수가 빨라지는 것을 확인했다. F=qE=ma를 통해서 실험에서 촬영한 동영상을 근거로 거리측정을 통해 실험에서 얼마의 전기장이 인가되어 있는지 예측하였다.

  • PDF

Properties of TiN films prepared by using the DC sputtering and HIPIMS. (DC 스퍼터링과 HIPIMS로 제조한 TiN 박막의 특성 비교)

  • Byeon, In-Seop;Yang, Ji-Hun;Jeong, Jae-Hun;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.102-102
    • /
    • 2016
  • 본 연구에서는 직류 전원(direct current; DC)을 이용한 스퍼터링과 고전력펄스 마그네트론 스퍼터링(high-power impulse magentron sputtering; HIPIMS)의 두 가지 방법과 빗각 증착을 적용하여 제조한 티타늄 질화물(TiN) 박막의 미세구조 변화가 물성에 미치는 영향을 확인하였다. TiN 박막은 99.5%의 Ti 타겟을 사용하고, Ar가스와 $N_2$ 분위기에서 스테인리스(SUS304)와 초경(cdmented carbide; WC-10wt.%Co) 기판위에 코팅하였다. 기판은 알코올과 아세톤으로 초음파 세척을 실시한 후 진공용기에 장착하고 기본 진공도인 ${\sim}2.0{\times}10^{-5}Torr$ 까지 진공배기를 실시하였다. 기판과 타겟 간의 거리는 DC 스퍼터링은 10 cm, HIPIMS 스퍼터링은 8.5 cm 이었다. 진공용기의 압력이 기본 진공도까지 배기되면 Ar 가스를 ${\sim}10^{-2}Torr$로 주입한 후 기판에 라디오 주파수(radio frequency; RF) 전원으로 약 -800 V의 전압을 인가하여 글로우 방전을 발생시키고 약 30 분간 청정을 실시하였다. 기판의 청정이 끝난 후 기본 진공도까지 배기한 후 Ar와 $N_2$ 가스를 ${\sim}10^{-3}Torr$로 주입하여 TiN 코팅을 실시하였다. 빗각의 크기는 $45^{\circ}$$-45^{\circ}$이며, TiN 박막의 총 두께는 약 $2.5{\sim}4.0{\mu}m$ 로 유지하였다. 공정조건에 따라 TiN 박막의 주상정은 형태와 기울어진 각도가 다른 것을 확인하였다. DC 스퍼터링으로 제조된 TiN 박막은 기판홀더에 약 -100 V 의 bias 전압을 인가하면 인가하지 않은 박막에 비해 치밀한 박막의 성장과 경도 값도 증가하는 사실을 확인하였다. 또한 빗각을 적용하고 bias 전압을 인가하지 않은 시편에서 박리현상이 일어났다. HIPIMS로 제조한 TiN 박막은 bias 전압을 인가한 박막과 인가하지 않은 박막의 주상정 형상과 경도 값에 큰 차이가 없었으며, 박막의 박리현상은 모든 시편에서 일어나지 않았다. DC 스퍼터링으로 제조한 TiN 박막은 bias 전압을 인가하지 않으면 색상이 노란색이 아닌 갈색으로 나타났으며, HIPIMS으로 제조한 박막은 bias 전압 인가 유무에 상관없이 노란색 색상을 나타냈다. 앞서 설명한 DC 스퍼터링과 HIPIMS의 공정조건에 따라 나타난 박막의 경도, 색상, 물성변화 차이는 DC 스퍼터링보다 높은 HIPIMS의 이온화율에서 기인한 것으로 생각된다. 본 연구결과를 이용하면 다양한 형태의 박막 구조 제어가 가능하고 이러한 미세구조 제어를 통해서 박막의 물성도 제어가 가능할 것으로 판단된다.

  • PDF