• Title/Summary/Keyword: 직렬형 하이브리드 차량

Search Result 19, Processing Time 0.026 seconds

A Study on the Characteristics of the Clutch Automation Mechanism of Hybrid Vehicles (하이브리드 차량용 클러치 자동화 기구의 특성 연구)

  • Lim, Won-Sik;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.778-783
    • /
    • 2012
  • Due to the increase of oil price, the needs of the reduction of the fuel cost is rising. Therefore, necessity of hybrid vehicle that runs with engine and the electric motor is on the rise. In order to improve the performance of hybrid vehicle, many researches is carried out. Hybrid vehicles have been developed with the various layout such as serial type, parallel type, power split type, and multi-mode type. The multi-mode hybrid vehicles are designed to show the efficient driving characteristics at low speed and high speed. But the multi-mode system have the problem such as frequent clutch engagement. Frequent clutch engagement causes the shock of vehicles, and the shock inhibits the ride comfort. In this study, automation mechanism of clutch operation is proposed to mitigate the shock at engaging clutch. For this purpose, the dynamic characteristics of motor control is numerically analyzed by using Matlab/Simulink.

Development of Electric Propulsion Equipment for Bi-Modal Vehicle (바이모달 굴절차량 추진용 전장품 개발)

  • You, Doo-Young;Park, Geon-Tae;Kim, Seung-Hwan;Bang, Lee-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.295-296
    • /
    • 2012
  • 세계적으로 화석연료에 의한 환경 문제로 인하여 연비가 개선된 전기자동차에 대한 관심이 날로 증가하고 있다. 본 논문에서는 친환경이면서 대용량 수송이 가능한 직렬형 CNG-하이브리드 바이모달 굴절차량에 적용되는 추진용 전장품을 개발하였다. 또한 전장품을 차량에 장착하여 운전 모드에 따른 차량의 주행시험을 통해 차량의 구동 성능 및 전장품의 제어성능을 확인하였다.

  • PDF

Comparison of Control Strategies in Series Hybrid Electric Vehicles with Batteries and Supercapacitors (배터리와 슈퍼 캐패시터를 가지는 직렬형 하이브리드 차량의 전력 제어 방법 비교)

  • Kim, J.C.;Lee, S.J.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.414-415
    • /
    • 2010
  • 하이브리드 자동차는 주 에너지원 외에 보조 에너지 저장 장치를 가지게 되는데 배터리와 슈퍼 캐패시터를 혼합하여 사용할 경우 주행 성능이 향상된다. 하지만 배터리의 경우 잦은 충방전이 일어날 경우 수명이 감소되고, 큰 전류에 의해 손상된다는 단점이 있다. 반면 슈퍼 캐패시터는 충방전 횟수가 많고, 수명이 길다는 장점이 있다. 따라서 배터리의 사용을 최소로 하고, 슈퍼 캐패시터를 주로 사용하여 제어 할 경우, 배터리의 수명 향상을 기대할 수 있다.

  • PDF

Components sizing of powertrain for a Parallel Hybridization of the Mid-size Low-Floor Buses (중형저상버스 병렬형 하이브리드화를 위한 동력전달계 용량매칭)

  • Kim, Gisu;Park, Yeong-il;Ro, Yun-sik;Jung, Jae-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.582-594
    • /
    • 2016
  • Most studies on hybrid buses are on large-sized buses and not mid-sized low-floor buses. This study uses MATLAB simulation to evaluate the fuel efficiency of such buses powered by diesel. Based on the results, a hybrid electric vehicle system is recommended for the best combination of power and gear ratio. A parallel hybrid system was selected for the hybridization, which transmits front and rear wheel power independently. The necessary power to satisfy the target performance was calculated, and the applicable capacity area was designed. Dynamic programing was used to create and optimize a component sizing algorithm, which was used to scale the capacity of each component of the power source to satisfy the design criteria. The fuel efficiency rate, optimum power source capacity, and gear ratio can be improved by converting a conventional bus into a parallel hybrid bus.

Design and Implementation of High Efficiency 3.3kW On-Board Battery Charger for Electric Vehicle (전기자동차용 고효율 3.3kW On-Board 배터리 충전기 설계 및 제작)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Jung, Hye-Man;Lee, Byoung-Kuk;Cho, Young-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.190-191
    • /
    • 2010
  • 본 논문은 전기자동차 (Electric Vehicles, EVs) 및 플러그인 하이브리드 자동차 (Plug-In Hybrid Electric Vehicles, PHEVs)용 리튬 이온 (Li-Ion) 배터리 충전을 위한 3.3 kW급 차량 탑재형 (On-Board) 충전기 하드웨어의 설계 및 제작에 대하여 기술한다. 차량 실장 특성을 고려하여 부하직렬공진형 dc-dc 컨버터를 적용하고, 80-130kHz의 고주파 스위칭 및 ZVS (Sero-Voltage Switching) 기법을 통해 수동소자의 크기를 최적화하여 5.84L, 5.8kg의 저부피, 경량을 달성한다. 전자부하를 대상으로 정전류 (Continuous Current, CC) 및 정전압 (Continuous Voltage, CV) 제어를 수행하여 93%의 고효율 획득 및 성능을 검증한다.

  • PDF

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

A Study on Optimization of Propulsion Systems for Series Hybrid Electric Vehicles Considering Mission Equipments (임무장비를 고려한 직렬형 하이브리드 차량의 추진시스템 최적화 연구)

  • Jang, Myeong-Eon;Kim, Sang-Man;Han, Kyu-Hong;Yeo, Seung-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, the study was conducted on the subject of the hybrid electric vehicles used by the military, and optimized the propulsion system for fuel economy considering energy supply to the mission equipments. For the analysis of the vehicles, a method based on the geometry and some assumptions was applied with basic vehicle dynamics. The sources of energy supply in the military hybrid electric vehicles are an engine, a battery and an ultra-capacitor. The optimal operation point among an engine, a battery and an ultra-capacitor can be found by minimizing energy consumption of driving power train and mission equipments. In the study, it was possible to find the optimal propulsion system by comparing fuel efficiency of the vehicles during the driving cycle.

Design and Implementation of 3.3 kW On-Board Battery Charger for Electric Vehicles (전기자동차용 3.3 kW 탑재형 배터리 충전기 설계 및 제작)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Jung, Hye-Man;Lee, Byoung-Kuk;Cho, Young-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.369-375
    • /
    • 2010
  • This paper presents a design and implementation of 3.3 kW on-board battery charger for electric vehicles or plug-in hybrid electric vehicles. Considering characteristics of the electric vehicles, a series-loaded resonant dc-dc converter and frequency control scheme are adopted to improve efficiency and reliability, and to reduce volume and cost. The developed on-board battery charger is designed and implemented by using high frequency of 80-130 kHz and zero voltage switching method. The experimental result indicates 92.5% of the maximum efficiency, 5.84 liters in volume, and 5.8kg in weight through optimal hardware design.