• Title/Summary/Keyword: 직렬날개

Search Result 4, Processing Time 0.017 seconds

An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV (접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션)

  • Lee, Seungjin;Lee, Jungmin;Ahn, Jeongwoo;Park, Jinyong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • The aerial launching UAV(Unmanned Aerial Vehicle) mainly uses a set of folding tandem wings to maximize flight performance and minimize the space required for mounting in a mothership. This folding tandem wing has a unique aerodynamic problem that is different from the general type of fixed wing aircraft, such as the rear wing interference problem caused by the wing of the front wing wake and vortex, and the imbalance of the pivot moment applied to the front and rear wings when the wing is deployed. In this paper, we have modeled and simulated various cases through computational fluid dynamics based on the finite volume method and analyzed various aerodynamic phenomena of the tandem wing type aircraft. We find that the front wing shall be installed higher than the rear for minimizing the wake influence and the rear wing can be deployed faster than the front because of the pivot moment due to aerodynamic forces. Also, considering the pivot moment due to aerodynamic force, the rear wing can be deployed much faster than the front wing. Therefore, it is necessary to consider it when developing the wing deploy mechanism.

Hydrodynamic Calculation of Two-stage Weis-Fogh Type Water Turbine (2단 직렬 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.709-717
    • /
    • 2017
  • In this study, a model of two-stage Weis-Fogh type water turbine model is proposed, the hydrodynamic characteristics of this water turbine model are calculated by the advanced vortex method. The basic conditions and the motion of each wing are the same as that of the single-stage model previously proposed by the same author. The two wings (NACA0010 airfoils) and both channel walls are approximated by source and vortex panels, and free vortices are introduced from the body surfaces. The distance between the front wing axis and the rear wing axis, and the phase difference between the motion of the two wings, which is in phase and out of phase are set as the calculation parameters. For each case, the unsteady flow fields, pressure fields, force coefficients, and efficiency of the two wings are calculated, and the hydrodynamic characteristics of the proposed water turbine model are discussed.

합금강 재질의 대용량 1000MW급 저압터빈 최종단 익(翼) 설계기술 동향

  • Kim, Du-Yeong
    • 열병합발전
    • /
    • s.71
    • /
    • pp.3-9
    • /
    • 2009
  • 최근 국내 발전분야 최고 관심사는 직렬형 축을 가지는 1000MW 이상의 대용량 고효율 증기터빈 개발 및 운영이다. 발전 산업계 요구를 충족시키기 위하여 터빈 설계사들은 새로운 대용량의 저압터빈 실린더 모듈을 개발하고 있는데 개발된 모듈의 특징은 진보된 유체역학과 구조적 분석 기술을 결합하고 기존 합금강 재질 최종단 익에 작용하는 응력한계 길이인 1000mm 이상 길이의 최종단 날개를 개발하는 것이다. 본 논고에서는 Alsthom사에서 새롭게 개발된 최종단 익(翼)의 공역학 및 기계적 특성 설계 개발내용과 실증시험 결과를 소개하고자 한다.

  • PDF

Behavior of Back Ground of the Laterally Loaded Pile Group (수평하중이 작용하는 무리말뚝 배면지반의 저항거동 특성)

  • Kim, Ji-Seong;Bae, Jong-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • In this study, we grasped the resistance state of the back ground which had a notable influence on computing the lateral resistance of the laterally loaded pile group in the homogeneous ground by the model test. Resistance state was grasped as the depth of rotation-point, wedge failure angle, and wedge wing angle. The model experiment is performed by varying the width, spacing and number of piles and the relative density of sand in this study. According to the observation of the rear ground surface deformation of the piles in lateral load, rotation point ratio, wedge failure angle, and wedge wing angle of the front row were similar to those of the middle row; however, those of the back row were relatively smaller. The rotation point ratio, wedge failure angle and wedge wing angle of the piles in parallel were the same as those of a single pile. Based on the model test results, equations for estimation of the rotation-point, wedge failure angle, and wedge wing angle are proposed.